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FOREWORD
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ABSTRACT

S

Theories of motion and stability of fluid-saturated soils, including the commonly
used engineering approach to liquefaction analysis as well as theories based on mechan-
ics of mixtures, are critically examined. Description of motion, development of equations
of balance, constitutive relationships as well as development of solution procedures are
reviewed. Limitations of various theories, their similarities as well as inconsistencies are
identified. Laboratory investigations into dynamic behavior of saturated soils are

reviewed.
T T e

A theory of dynamics of saturated soils using a convected coordinate system to
describe the motion of soil particles; and describing the motion of the fluid as relative
to the solid, is described. * This theorys may be regarded as_an extension of Gibson's

theory of non-linear soil conmsolidation to three;dimensions and to include inertia effects.

Solution procedures.developed for certain specializations of the equations of motion
of saturated soils, are described. These- include . analytical, semi-analytical and numerical
solution schemes. The finite element is selected as the numerical procedure for approxi-
mate solution. Spatial discretization, time domain solution procedures and alternative for-

mulations of the field equations through a variational formulation are discussed.

Shaking table tests for validation of various -theoretical concepts, performed on
saturated Ottawa sand- are described. These -included tests on anisotropically as well as
isotropically consolidated samples and tests to study the effect of overburden on a soil
system subjected to shaking. Harmonic as well as frequency banded random amplitude

excitations were used. Results are compared with previous laboratory investigations.
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Section 1
INTRODUCTION

1.1 THE PROBLEM

Dynamic loading of fluid-saturated geological deposits results in changes in the
fluid pressure as well as the strem field in the solid matrix. This phenomenon can, in
some cases, lead w0 instability of the soil matrix resulting in soil liquefaction. Addition-
ally, the energy dissipation amociated With the relative oscillatory motion between the
fluid and the solid could introduce attenuation of the propagating wave. This effect
would be in addition to the energy dimsipation due to any inelastic deformation of the
soil matrix. Inasmuch as the transmissibility of motion through the soil layer depends
upon the soil characteristics, the soil deposit may act as a selective filter/amplifier.
For prediction of bebavior of saturated soils under dynamic loads due to blast, earth-

quake or other dynamic event, it is important to develop adequate methodology.

Reliable analysis of saturated soil deposits subjected to dynamic loads involves the
following three steps
1. Correct formulation of the equations of dynamic equilibrium.
2, Correct representation of material bebavior.
3. Exact or approximate solution of the problem.

The theoretical mode! must be validated by laboratory and/or field tests. As exact
solutions to the boundary value problems represented by the laboratory and field tests
may not be available, it may be necessary to use numerical solution procedures. How-

ever, before any computational technique can be used with confidence, it must be veri-

‘,
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fied against exact solutions to the theoretical model. Jt may be necessary to construct

exact solutions to some simple problems for code verification.

In view of the apparent diversity of opinions, postulates, and assumptions made
in setting up various approsches tw the problem, there was evident need w0 develop
more realistic models of mechanical behavior of fluid-saturated soils The research pro-
gram supported by the Air Force Office of Scientific Research was designed to address

all the three components of the problem.

12 RESEARCH OBJECTIVES

Figure 1 illustrates the variables involved in the problem of dynamics of fluid-
saturated soils. In the absence of water, the dry soil would be modeled as a coatin-
uum. Its motion would be defined completely by the components of displacement,
velocity and acceleration designated u, U, U, in the figure. These would define strains,
and strain-rates, which would be related through coanstitutive laws to the stremses, and
the stress rates. Equilibrium relations would relate the stresses with the applied body
and surface forces. Similariy the mechanics of the fluid, in isolation from the solid are
well-known. However, when the two occur together, the problem immediately becomes
much more complex. The equilibrium equations for each of the two constituents may
involve interaction terms; the stremses in each fnay depend upon the kinematics of both;
and there may be other couplings in the behavior. Various theories have been proposed
from tume to time t explain the mechanical behavior of saturated soils and methodolo-

gies have been suggested for analysis of liquefaction.

The objctive of the research program, was to critically evaluate the current
methods of analysis in the light of recent developments in theories of interacting con-

tinua and to develop thermodynamically and physically consistent theoretical or mathe-
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A. INERTIRL COUPLING
B. CONSTITUTIVE COUPLING

C. BRLANCE COUPLING
(MASS,MOMENTUM, ENERGY)

Figure 1: Variables Involved in Dynamics of Saturated Soils
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4
matical models of fluid-saturated soil systems Theories of interacting continua, in gen-
eral, regard a fluid-saturated soil as a multicomponent mixture (superposed continua).
This approsch had been successfully implemented in the analysis of static and quasmi-
static response of saturated soils. Several investigators have tried to extend this
approach to the dynamic case. However, there have been deficiencies in realistic simula-
tion of behavior of saturated soils. The purpose of the research program was to review
the theoretical basis of equations governing behavior of soil-water mixtures under
dynamic conditions, including interaction between s0il and water. The theoretical
development was to be implemented in effective finite element computer programs
incorporating recent developments in coding to ensure optimal combination of solution
accuracy and economy. Tbe analytical research was to be supplemented by a program

of laboratory investigations.

1.3 RESEARCH PLAN.

A two-year program of research was initially approved by the AFOSR starting
February 1, 1983. This was later extended to a four year effort ending January 31,
1987 and finally by another one year and one-month to February 29, 1988. The

research plan included both theoretical and laboratory investigations.

14 ANALYTICAL STUDIES

The first step in the research program was to carefully examine the theoretical
underpinnings of various existing theories of motion and stability of fluid-saturated
soils. This investigation covered a range of theories and procedures, including the com-
monly used engineering approach to liquefaction analysis and extending to mathematical
theories based on mechanics of mixtures. A theory properly describing the physical phe-
nomena was to be selected/developed and implemented in a solution procedure t pre-

dict the liquefaction behavior of the saturated soil under dypamic loading.

. @
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1S5 LABORATORY INVESTIGATIONS
To provide a database for validation of various theoretical concepts, shaking table
tests were to be performed on saturated Ottawa sand. A program of tests on anisotrop-

ically as well as isotropically consolidated samples was t0 be carried out

16 COMMENTS

The research program essentially followed an evolutionary approach. As the first
step in the program, literature on the subject was carefully reviewed. Two approaches
were selected for detailed investigation. These were the popular “engineering approach™
introduced by Seed and his co-workers [77-80,148] for liquefaction studies, and the
theories of mechanics of mixtures including Biots theory [17-19] which has been the
basis of analytic and numerical solutions for the problem. A dynamical theory for
dypamics of saturated soil was developed as an extension of Gibson's theory of non-
linear consolidation. For interpretation of test data in terms of predictions from vari-
ous theories, it was necessary that solutions to boundary value problems defined by the
competing theories be available. It was found tbat solutions to only the simplest con-
figurations were available for Biots theory. Approximate solution schemes had been pro-
posed by several investigators but these had not been adequately verified. Finite ele-
ment computer codes were developed for analysis of dynamic respomse of saturated soils
for linear as well as nonlinear material properties for the engineering approach as well
as Biot's theory and its appropriate extension. Semi-avalytic solution procedures were
developed to serve as bench-marks for validation of the time-domain integration
schemes. Analytical solutions were developed for certain problems for the purpose of

code verification.

Validation of numerical procedures presented a difficulty because of the paucity

of exact solutions even for relatively simple problems. Garg's [50] fundamental solution
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for Biots equations specialized one-dimensional wave propagation in fluid-saturated
media was integrated to develop solutions for several cases of dynamic loading on the
surface of a saturated soil column. Inconsistencies in the solution for ‘'strong’ coupling,
for which the drag between the s0il and the fluid is high, were removed but it was
noticed that, in order to obtain an exact solution t the problem, Garg had made
asumptions which reduced the value of his theoretical solutions as bench-marks to ver-
ify numerical procedures. To meet the needs of the research program effectively, correct
solutions to this problem were developed. It was found that for the materials com-
monly encountered and for a short period of time after application of a sudden (eg.
blast) load, Garg's approximation is quite good. Analytical solutions for some simple
cases were developed for propagation of standing waves by separating the singularity
from the smooth diffusive wave motion and using a combination of the method of
characteristics and finite element/finite difference procedures. These solutions were
extended to some two-dimensional cases. Computer codes were tested against these exact

solutions.

To develop alternative finite element approaches, a variational formulation of
Biot's theory, along with various extensions and specializations, was developed. It served
as the basis for the two-field and the three-field finite elemen; solution procedures.
Elements suitable for wave propagation analysis were selected/developed. Singularity
elements had to be used near loaded boundaries. For nonlinear problems, an incremen-
tal approach was necessary. The equations governing this case along with a variational
formulation of the problem were developed. Only material nonlinearity was considered.
The theory was implemented in a finite element computer program. A modular struc-
ture was used so that a variety of models could be selected. The well-established ‘cap
model’ was implemented to fit the behavior of the sand used in the laboratory experi-

ments. For constitutive equations in incremental form, the corresponding balance equa-




7
tions t00 were written in terms of incremental quantities. This introduced incremental
changes in porosity and mass density as additional variables. Nonlinear codes were

checked against available solutions for wave propagation in single materials.

The experimental component of the research program was completed as envisaged

in the proposal. It had the following components:

1. Development of techniques for evaluation of material parameters that appeared
in the theoretical models considered.

2. Construction of a uniform, fully saturated sample.

3. Application of motion to the sample on a shaking table.

4. Recording of input acceleration and pore pressures up to liquefaction.

S. A::lg:s of the experimental data for the purpose of evaluating the theoretical
m

A fine to medium grained sand, Ottawa sand, was chosen as the material to be
used in the experimental studies. A program of static tests aimed at identifying basic
material parameters that appear in the theoretical models was performed. For liquefac-
tion experiments particular emphasis was placed on laboratory techniques for proper
preparation of the necessary sand samples. Suitable methods for saturating the approxi-
mately S0 kilograms of sand required to build a sample were developed and samples
with a high degree of uniformity were repeatedly achieved. Instrumentation was cali-
brated under both cyclic and static loading conditions. Different types of pore-pressure
gage applications were studied. Initial shaking table tests were designed to identify the
most reliable and sensitive instrumentation capable of recording input acceleration and
progressive development of pore pressures up to liquefaction. Improvements in collection
of data and its processing were implemented. Additional instrumentation was acquired

to collect an increased amount of information during tests.

‘! o




These tests established the capability of the experimental set-up to serve the
immediate needs of the program. Both isotropically and anisotropically consolidated
samples were tested to liquefaction. Input motions consisted of both harmonic accelera-
tion time histories and random, white noise, accelerations. Further tests were carried
out t study the effect of overburden on a s0il subjected to shaking. The experimen-
tal data obtained were compared with the results of previous laboratory investigations.

Shortcomings in these earlier test procedures were identified.

Figure 2 illustrates the scope of the actual work plan and the accomplishments

under the research program.

1.7 STRUCTURE OF THE REPORT

Section II contains a review of previous theoretical investigations on the behavior
of saturated soils subjected to dynamic loading in order to highlight the basic assump-
tions of the various approaches. Section III describes a dynamical theory of motion of
saturated soils, developed as part of the present research program, based on description
of the motion of a given set of soil particles in convected coordinates and regarding
the fluid motion as relative t the soil perticles. Section IV describes some anlytical,
and semi-analytical soiution procedures developed to obtain solutions t some simple
one-dimensional problems as well as development of finite element techniques for anal-
ysis of wave propagation in saturated soils. Section V reviews previous laboratory
investigations and summarizes the experimental component of the research program.
Section VI summarizes the results of the research and contains recommendations for
future work. Appendix A describes some concepts related to the use of convected coor-
dinates t0 describe the motion of a solid. Appendix B lists the research publications and

presentations that resulted from the research effort
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Section II

REVIEW OF PREVIOUS WORK

2.1 INTRODUCTION

Existing theories of dynamics of fluid-saturated soils were reviewed. Limitations
of various theories, their similarities as well as inconsistencies were identified. The
"engineering approach”, described herein and based on methods of structural mechanics,
was considered along with the continuum mechanics approaches. Herein we briefly
review the salient features of these approaches as the background for the theory devel-
oped in the course of this research. Detailed documentation of this review is available

in the technical report listed as item 1.2 in Appendix B.

2.2 THE ENGINEERING APPROACH

This approach, introduced by Seed and his co-workers [77-80,148], uses methods of
structural dynamics to solve the problem of shear wave propagation in soils. The
approach has been successfully applied to several case histories [85,88,128,145-154] It
consists of a finite element analysis of the dynamic system to evaluate the stress histo-
ry. This is followed by a laboratory Study of the material behavior under cyclic stress
conditions equivalent to those determined from the finite element analysis. This
approach has been extended to include a periodic updating of material behavior to
allow for the strain history as well as pore-water pressure build-up and dissipation.
The stiffness is assumed to be a function of the volumetric strain and the effective
stress in the soil. Generation of pore water pressure is assumed to be related to vol-

ume changes in water and soil. Assuming water to be incompressible, an incremental

- 11 -
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relationship is proposed between the incremental pore pressure and the volume change
in the soil. For one-dimensional idealization of a horizontally layered system subjected
to shear wave at the base, dissipation of the pore water pressure is expected to be gov-

erned by the equation
»=E[X7 ] +E¢ @2.1)
Tt ITe2 r kk . "

where w is the unit weight of water, K the permeability, E, the the one-dimensional
rebound modulus of the material at the effective stress applicable to the increment, and
e, are components of the strain tensor for the soil. Finn [42] called this the coupled
theory of liquefaction. The sequence of occurrences is assumed to be as follows: shear-
ing stresses cause volume changes, volume changes result in pore-water pressure changes,
pore-pressure dissipation follows, pore-pressures determine effective stresses and effective
stresses along with the cumulative shearing strain define the effective shear modulus to

be used for determination of displacements and stresses for the next time step.

Item 14 in Appendix .B contains details of the methodology of the “engineering
approach” to liquefaction as well as its implementation in a computer program. The
computer code developed was used to obtain the responmse of a layered soil system sub-
Jected to sinusojdal base acceleration. The problem data were taken from a case study
reported by Finn [42] The surface aoceleraﬁon and displacement as well as the time to
liquefaction reported by Finn and obtained using the code were in good agreement.
However, the detailed response history obtained ‘using the implicit and the explicit
methods was quite different. With refinement of the time mesh, one would expect
the explicit method to yield a sequence of results which would converge to the solu-
tion obtained by the implicit method. However, the solution procedure requires experi-

mental data which are dependent upon the frequency of cycling, the natural frequency

of the soil system etc. and would have to be generated for each case studied. The

N
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study showed the approach to be cumbersome and based upon several assumptions. The
physical properties required as data for the method can only be determined as a func-
tion of the complete number of cycles of stress at a certain amplitude. Thus, in an
explicit type solution scheme, it is possible to reduce the time interval for updates to
only as small as the time period of vibration. For this reason it is not possible to gen-
erate a convergent sequence of solutions based upon reducing the size of the time step.
Implicit schemes are expected to be more reliable. Post-liquefaction distribution of pore
pressures and the extent of the resulting disaplacements in the system cannot be cor-
rectly determined in this theory. Furthermore, the approach has only been used for
one-dimensional wave propagation, and cannot be readily extended to two and three-
dimensional cases. Use of this theory requires considerable experience and "judgement”,

in addition to extensive laboratory testing program, to get useful results.

23 CONTINUUM MECHANICS APPROACHES

23.1 Biot's Theory.

Biot's theory, based on concepts of coupled motion of soil and water, has been the
most popular alternative to the empirical approaches. This pioneering work was based
on certain postulates regarding description of motion, notion of partial stresses, the exis-
tence of energy and dissipation functions for the saturated mass and a certain form for
the kinetic energy of the mixture. These assumptions led directly to the conclusion
that constitutive coupling, inertial coupling and equilibrium couplings exist and are
symmetric in form. The equations of momentum balance were written for the mixture
as a whole and for fluid motion relative to the solid. Several different forms of Biot's
theories exist. The most general form includes body forces, inertia forces and the effects
of coupling of the fluid and the soil mass as well as the constitutive coupling

between the soil and the water.

8. .8
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Biot [11] wrote the constitutive equations for the flow of a compressible fluid
through a porous saturated linearly elastic medium assuming the existence of an energy
function quadratic in measures of deformation associated with the saturated soil mass
These included the six components of the soil strain. Change in water content was
added as the seventh kinematic variable. While extending the analysis to compressible
fluids and anisotropic elastic or viscoelastic solids, Biot [14,15] introduced the volumetric
strain of the fluid as the additional strain parameter instead of the change in water
content used in the earlier theory and explained later [20] that the two variables were
essentially the same. Garg’s [50] formulation can be shown to correspond to Biots. In
Garg's theory, the constants are related to the properties of the constituents and their
volume fractions. For the dissipative case, a dissipation function, quadratic in relative
velocity was introduced. For a statistically isotropic saturated material, Biot [17-19]
expected the kinetic energy to be quadratic in the velocities of the fluid and the soil
and a coupling term was included. This introduced an inertial coupling between the
soil and the fluid. However, it is difficult to assign numerical values to the various
quantities that arise as a result of this coupling. As a part of this review, the theory
was implemented in a finite element computer program and a parametric study carried
out to investigate the efect of this coupling on the dynamic response. Preliminary stud-
ies indicated that the effect would be insignificant. However, further study of this

particular feature is needed.

While developing finite element solution procedures for the problem, Ghaboussi
(53], following Biot [15,18,19] introduced relative volumetric strain in the formulation.
The momentum balance and the continuity equations were written in terms of six dis-
placement components viz. the soil displacements and the relative displacements of the
fluid. A Rayleigh type viscous damping term was introduced. This intrinsic damping of

the soil is in addition to the damping associated with relative motion. Ghaboussi [53]
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developed a variational formulation for the problem but for the purpose of finite ele-
ment analysis he used the Galerkin procedure. Also the boundary conditions were not

treated properly.
2.32 Theories of Mixtures.

2.3.2.1 Introduction

To apply the principles of continuum mechanics, it is customary to regard a
fluid-saturated solid as superposed continua. Averaging of various quantities, kinematic
as well as mechanical, associated with the various constituents, is inherent in this
assumption. The mixture is defined by the current coincident configuration of the con-
stituents. It is assumed that, in the current configuration, each point of space is occu-
pied by a particle of each' of the constituents. This necessitates the introduction of
"bulk” description of the material instead of the "intrinsic” description which would
apply if the material were the single constituent of a body. In any theory of mix-
tures, it would be necessary that as the volume fraction of one of the constituents
approaches unity, and the remaining constituents disappear, the theory for a single con-

stituent be realized as a limiting case.

In developing a rational theory of mixtures, Truesdell [165] laid down the fol-
lowing principles:

1. All properties of the mixture must be mathematical consequences of properties
of the constituents. :

2. So as t describe the motion of a constituent, we may in imagination isolate
it from the rest of the mixture, provided we allow properly for the actions
of the other constituents upon it.

3 The motion of the mixture is governed by the same equations as is a single
body.

The third of these "principles” is open to serious objection. This issue is addressed in

a later paragraph.

N
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2.3.2.2 Density of Each Constituent and of the Mixture.

The effective (also referred to as partial or bulk) demsity of the kth constituent,
when it is regarded as one of the continua occupying every point in the spatial region
of interest, is related to its intrinsic density as

= n(k) p(k)' (2 2)

p®
where n® is the volume fraction, superscipted Roman characters enclosed in parentheses
identify the constituent in the mixture, and a superscripted asterisk denotes an intrinsic
quantity. The density of a mixture of n constituents is defined as the weighted sum
of the densities of the constituents ie,
n
p = Zp"‘) (2.3)
k-1
Other definitions for partial densities have been used. Terzaghi [161] assumed the

effective density of water to have the intrinsic value and regarded the soil as buoyant

in the water.

2.3.2.3 Description of Motion.

Several approaches have been used to describe the motion of the constituents of a
multicomponent mixture. Often the deformation is referred to an initial configuration
for each constituent and motion to the place coordinates. The equations of balance are
written for a fixed volume in space. Another approach is to refer the motion of all
constituents to the reference configuration of one of them. Yet another is to refer all
motion to the current configuration which is the same for all conmstituents. Superposi-
tion of relative diffusive motion of the constituents upon the mean motion of the
mixture as a2 whole is also used. For a binary mixture of a solid and a fluid, some
investigators describe the motion of the solid with respect to its reference configuration
but the motion of the fluid is described as relative to the solid. Another approach is

to refer to a material region consisting of the same set of particles of one of the con-
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stituents so that the bounding surface of this constituent varies with time. If the
description of the material particles is the same during motion as in the initial config-
uration, this would be the convected coordinate description for the reference constituent.

Gibson's theory of consolidation [55] is a special case of this approach.

Using a fixed rectangular cartesian reference frame, the deformation gradient is
defined as the partial derivative of the place coordinates with respect to the reference
coordinates. The velocity vectors and the acceleration vectors are defined as the partial
time derivatives of the place coordinates for the same material particle. Most investiga-

tors, also introduce a barycentric velocity rate for the mixture as a whole as:

n (k)vfk)

v, = : (2.4)
Z—

where v, are components of the velocity vector. A material rate for the mixture is

established using the identity:

- (k) D(k) D (2.5)
Lr 5 <P 25

k=1
The diffusive velocity is defined as the wvelocity of a constituent relative to that of
the mixture, ie.,

ugk) = vi(k)_ v, (2.6)
Biot [15,18,19} for. the case of binary mixture of a solid and a fluid, introduced a

nominal relative velocity
w, = n(Z)(VEZ)— v?)) : o))
This and its variants were used by Ghaboussi [$3], Krause [86] and Kenyon [84] among

others.
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2.3.2.4 Mecasures of Deformation.

The deformation gradient and the spatial velocity gradient can be used to com-
pletely define rates of deformation. For material objectivity to be satisfied, the vorticity
tensors, in binary mixtures, must occur as the difference of thé vorticities of the con-

stituents.

For a fluid-saturated porous solid, the deformation gradient can be used to
describe the changing configuration of the solid. Garg [48,49] and Morland [103,104)
among others, used as measures of deformation of the solid, the quantity

1 _ u(l)

1.0 a
& =y, = 5[ui'j+uﬁ)] 2.8)

where u, denotes components of the displacement vector. Here, and in the sequel, we

use the standard indicial notation. The Roman indices take on values in the range 1,
2, 3. Summation on repeated indices is understood unless stated otherwise. A subscript-
ed comma denotes differentiation with respect to the coordinate represented by the sub-
script following it. Parentheses around a pair of indices indicate "symmetric part” and
square brackets the “antisymmetric part”. Superposed dots indicate differentiation with
respect to the time parameter. This measure of deformation characterizes the linear
theory. For setting up constitutive relations for flow through a porous saturated elastic

anisotropic medium, Biot [15,16] used relative volumetric strain defined by the equation

_ 2 (2 (D
{ =n"(e, —e,) : . (2.9

Other, more general measures of deformation are also used, e.g. [103] For an initially
isotropic solid, it is possible to define as a measure of deformation the quantity

2,=F_ F -8 (2.10)

mi~ mj
where F,, are components of the deformation gradient tensor. If the only deformation
of interest is the volume change the change in density is an adequate measure of

deformation. In a binary fluid-solid mixture, for small strain
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(1) (1) (1) (1)
P =Py = =Pt

(211
where the subscript denotes initial value or the value in the reference configuration.

For the fluid constituent the deformation is completely represented by its density, ie,
(2)

2) (2r
@_Po _; - 2P _, (2.12)
i P(Z) n(2) p(Z)‘
Introducing an intrinsic measure of deformation [103]
2r _ ¢ (2), (2317342
ng =[n /no)] F(ij (2.13)
Morland [104] also proposed, for infinitesimal strain theory,
2 (@
ar_ (1)_[n —no)] (2.14)
i i [1__ngz
(1)
—= L (2.15)
ii ¥y
Po
(ir 1 (are _ (_ 1 (D
¢ ~ 3tam Sij =€~ 3 8,; (2.16)
and [106]
(2) (2
= &2 [;.-—f&)l 217
i i @
n,

In addition to the measures of deformation defined above, the volume fractions of the

constituents have been used as state variables. An intrinsic rate of strain of the fluid

2@ (@ @
D7 = pP4 Ll | D10 5 (2.18)
j i 3\n,| Dt |4@] 4
was introduced by Morland [104] Here D denotes the "material rate”. Another

measure of relative deformation sometimes used is, (e.g., Krause (86]), the change in flu-
id content of a fixed volume in space. This amounts to
n = p(z)_ p(°2)= (n?= n(on)p(z)'

(2.19)
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Carroll [27) considering a fixed volume of the solid in the reference configura-
tion, assumed the total deformation to be the sum of the strains of the solid particles

and the change in geometry of the pores. The bulk volume strain was found to be

AV _ An(z) Av(l)

v = + -y (2.20)
For the anisotropic case, Caroll [29] wrote
= S ax, (2 2r_ r, (2 (2r__(
e;=n ¢ +ne = +n (e‘j eij)') : (2.21)

as the strain of the reference material volume of the bulk solid. Carroll [28] assumed
the solid intrinsic deformations to be reversible under solid pressure and the pore vol-
ume change to be irreversible under effective pressure. This would explain cumulative
volume change under cycling of load. Kenyon [84] regarded the specific volume of the
solid as a state variable related to the intrinsic pore fluid pressure and the solid defor-

mation gradient.

2.3.25 Balance Laws

a).  Earlier Theories.

The equation of mass continuity of the fluid, equating the inflow into an elemen-
tary volume of a rigid porous one-dimensional solid with the increase in fluid content,
is

_Q_( (2) O 20xy -
pov)+ L(p )=0 (222)
oxX gt X

Here v is the velocity of the fluid relative to the soil and x, X are the coordinates in
the current and the reference configurations, respectively, referred to a Cartesian refer-
ence frame. Allowing for compressibility of the pore fluid, Gibson [55] used Scheideg-

gers [140] formulation of d’Arcys law. The flow equation has the form

@ fr 9x _ _.r9m (2r 9x
np vax k[ax + p ax] (223)
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Ghaboussi [54) stated Biots momentum balance equations as
tij'j+ Pbi = pﬁgl)_ P(Z)[.ﬁ?)-ﬁ?)] = p(l)u(l)+ p(Z) +(2) (224)

and

™, +p )b (z)-(l) (2)[\1?)—'13?)]— % [1.1?) (2)] (z)~(z) 1 [ﬁgl)_ ﬁ§2)] (225)

where k is a measure of permeability of the soil and t, are components of the "total”
stress tensor. Garg [50] wrote Biot's equations of motion, in the absence of body forces,
in the following form:

‘f,ni - p(x)ﬁ(l) +b(um (z)) (2.26)

7w, = p 8 - b (a -u) Q27

The second term on the right hand side of these equations represents the viscous

coupling between the solid and the fluid.

b). Mechanics of Mixtures.

For each constituent of the mixture, Truesdell [164-166] postulated the balance laws

in the point form. Using the notation of [64] these were:

i Continuity of Mass.

gt_ p(k) + (p(k)vgk))" = pc(k) (2.28)
where c¢® is the mass production fraction of the kth constituent. An alternative form

of the mass continuity equation is

(k)
Il))t 2_ %4 p(k)v?‘:— pc® (229)

Bowen (24] wrote the above equation in the form

pY det F) = pcVdet IF) (2.30)
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ii.  Balance of Linear Momentum.

_Q_(p(k) (k)) +(p ), (t) (l)). (t) ngk) + p(x)bfu) (2.31)

Here tf,”, pb,"". pm,"'J are, respectively, components of the partial Cauchy stress tensor, the

body force vector per unit mass and the pertial momentum supply density for the

constituent. An alternative form is:
P<k)f§l)= t(‘;., t)b(k) (k) (t) (2.32)

Bowen [24] proposed to replace the momentum supply term m® by m®+c™v® to get

(n)f(‘k) + pm(x) + p“"bf" (2.33)

ili. Balance of Moment of Momentum.

(x)_ (x) _ k)
Lot = pr, (2.34)
Here pMﬁ" are components of the skew-symmetric tensor describing the partial produc-

tion density of the moment of momentum of the kth constituent.

iv. Balance of Energy Rates.

(k)
p(k)l?)‘ (U(x))+ (x) p(k) (I (u) E::)"’ paU® (2.35)

where

AUY = M (- %ka)v:x))c(k) vo (k) lM(t) (l) (2.36)

Here U%, g%, 1™, ¢® are, respectively, the specific internal energy, components of the

partial heat flux vector, the partial energy supply and the partial energy production

density of the kth constituent.

L9
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Bowen [24] wrote the energy rate balance equation, for a fixed volume in space

of the kth constituent, and derived the point form of the equation of energy balance

(k) AK)
wD®U® | w_ ww_ w
prI——+q P T LA j+p¢: 2371

Several alternative forms of the above equation have been stated [24,164] Bowen [24]
pointed out that for the case of single temperature mixtures, explicit use of an energy

equation for the constituents is not needed.

Truesdell [164,166] postulated balance equations for the mixture as well. These
equations can be derived by summing over the equations for the constituents. Truesdell
introduced the following quantities to ensure that the resulting equations for the
motion of the mixture have the same form as the equations of motion of a single con-

stituent.
i Specific internal energy of the mixture

=1 2 )y, u“"u“’) (2.38)

k=1

Or, equivalently,

n
p(U + %vivi) = Zp(k)( U(k)+ 2 fk) (k)) (2.39)
k=
ii. Total stress tensor
- (
= Z( ti:)- p(k)u?)u(jk)) (2.40)
k=1
Or, equivalently,
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iii. Total heat flux vector

n

), & x), 1 () &N (&) _ (k) (k)

q= 2((1i +pB( U +5uj uj))ui -t
k=1

Or, equivalently,

n
1 - ®, @® &), 1 () ( (x)_(x
ql+pvi[U+5vjvj]—tuvj = Ylq +p v, (Ut +3Y; Y, ))—tji Vj)]
k=1

iv.  Specific energy supply.
n
e= 130000 00
P
Or, equivalently,
n
p(r+ bi"i) = Z p(k)( 1,(k) + bgk)vgk))
k=1
Also, thermodynamic isolation of the mixture was assumed, ie.,

n

zc(k) =0

k=1
n
Fai -0
k=1

TM =0

k=1

and

iem -0

k=1

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

2.49)

Kelly (82], Truesdell [164], Green [66] and Bowen [24] wrote the equations of

mass, momentum and energy conservation for the mixture contained in a volume V

bounded by an arbitrary fixed surface A. The conservation of mass was expressed by

n n
gt_ .[Zp(')dV+ f anp“‘)v?‘)dA =0
k=1 A

k-1

(2.50)

A!
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Equating the linear change of momentum to the total force exerted on the

material, using the divergence theorem, Green [66] obtained
D = ) ®
.[ pﬁvi+[.2p uikuj
-1

The point form immediately follows from this integral form of the equation of bal-

n
av = [ WP+ )av 2.51)
k=1

o)

ance of momentum. Green [66] noted that with the definition of the total stress tensor
proposed by Truesdell, their form of the equation is the same as that obtained by
Truesdell. However, if the total stress is defined as the sum of the partial stresses, the
equation reflects the fact that the total rate of increase of linear momentum is not
equal to the barycentric rate of increase of momentum of a continuum of density

moving with the barycentric velocity.

The theory for a mixture of two constituents presented by Green [62,64] was
generalized by Mills [99] to the case of multicomponent mixtures. Green [62,64] consid-
ered the concepts of stress, heat flux, and energy supply, assumed to "be primitive to
each constituent, to be primitive to the mixture as a whole as well. It was proposed
that the total stress and the total heat flux for the mixture should equal the sum of
the corresponding quantities for the constituents. Green [66] stated that Truesdell's equa-
tions were correct but there was difficulty accepting the interpretations associated with
some of the quantities which occur in these equations. For a volume V enclosed by a
fixed surface A, following Truesdell's contention thﬁt the rate of energy ;quauty has

the same form as for a single constituent, Green [66] wrote

9 1 1
5 p(U + 2vivj)dV+ | pn).v).(U+ 2vivi)dA

n
= Z M4 b?‘)v?‘)) dv + f ( A q)ndA (252)
k=1 A

2.
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Here the left hand side represents the rate of change in energy in volume V bounded
by a fixed surface A plus the energy flux for the mixture across the boundary. U is
the specific internal energy per unit mass of the mixture and is related to internal
energies of the constituents by Truesdell's equation. The equality may be regarded as
written for a surface moving with a continuum which has a velocity field equal to
the barycentric velocity. Then the left hand side is equal to the material rate, executed
on the mixture, of the sum of the ﬁumﬂ energy and the kinetic energy of the mix-
ture. However, this line of thought is open to objection. It would assume the existence
of mixture particles and the time rates executed on them. This is, in general, not cor-
rect as the barycentric velocity is not particle velocity in the ordinary sense. Green
. [66] accepted the form of (2.52) but not the interpretation associated with some of the

quantities occuring in it.
Green [62] proposed a rate of energy equality in the following form:

(x)_(k) (k (k)_ (k) (k)_ (k) (k) (]
L [eou+3 va ’)dv+f(Uva +#1 Z VOO an

k=1
(pr+ zp""b“" ©)qv + f T (O g)aa (253)

A k-t
Here, the heat fluxes and the energy supply are assumed to be additive. U is the
internal energy per unit mass of the mixture allowing for all interactions between the

(x)

constituents. The t," are components of tractions associated with the kth constituent

and the surface A. In this theory, multipolar stresses and externally supplied multipo-
lar body forces were excluded. Green [62] also made no attempt to define the internal
energy and the energy supply for each constituent. It was considered unnecessary for a

complete general theory.

o
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Later, [64] the role of interactions between constituents was made explicit by writ-

ing, for each constituent, the rate of energy equality

_g_ l‘ (k)( U(k) + 1 v(k)v(k)) dv + f (k) (k)( U(k) + ; i )v§k)) dA
= [ P +6vDav + [({P-g")aa
A
.[[( o (k) + )‘(k)r(k)) + ¢(k)] av — f‘—l&) dA (2.54)

where o, x,‘}’ are the internal force and couple acting on kth constituent due to

interactions and ¢“". c-l‘” represent volume and surface contributions, respectively, to the

balance of enmergy. Also

Tl =0 (2.55)

ZA“" (2.56)
-1

Y=o 2.57)

k=}
Without loss of generality, A, can be taken to be [64] antisymmetric as I",}’ is anti-
symmetric. Bowen [24] and Bedford [9] used essentially the same form in writing ener-
gy balance equality for each constituent. Assuming the quantities , p, U, v, for the

mixture are sufficiently smooth in the space and time variables, it can be shown that

n
DU (k). (k) LK) ,(x (k) 1 (x) (k

2 l
k=1

f Z( KON (x) (2.58)

Invariance of the energy equality under superposed uniform translational velocities

yields, for arbitrary V,

NI
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n
¥ pcav =0 (2.59)
k=1

ie, the mass elements of the mixture are conserved. It was also shown that

De

Se A% =0 (2.60)

A generalization of Cauchy’s stress principle was derived in the form

F = z @, (261)

k=1

| In point form, the equation of balance of linear momentum for the mixture postulated

by Truesdell was obtained. Green [62] obtained, for a binary mixture,

[ { pr_p_ + [ "(b“’ f( - p(Z)(b§2)— f?))](v?)—v?)) + % ti_j(vgx) +v§2))'j} 4V

+ % f( tf‘)— tf”)(vf"—- vﬁ”) dA = f qdA (2.62)
A A

Defining, following Mills [99]

p?‘) = t?‘)- tg‘)nj (2.63)
and applying the rate of energy equality to a tetrahedron bounded by the coordinate
planes and a plane with unit normal n, for heat flow h, across plane x, for a binary
mixture, Green [62] obtained:

q—hp, = l( “) m)(vi”—vﬁ”) A (2.64)

(1

In the special case when q=hn, p, ) and pf” vanish except, possibly, in the case of no

relative motion between the constituents. Rate of energy equality can also be stated as

[

e(lk) - tf:');.' p(k)( bfk)_ ffk)) (2-66)

DU _ (x)_ (k) 1 (1) (k) (x) (x) (k) -
T pr+h; EO v, +,§ =pc Vv, Vv, ,Et dvV =0 (2.65)

where




29
Invariance under a superposed uniform rigid body angular velocity leads to symmetry
of the sum of partial stresses. The partial stresses do not have to be symmetric. The

rate of energy equality was written in point form as:

n ol o1 :
DU (x) (k) (&) <K _ (nhy _ g (&) () (nN _
P —PTY b~ Zt(.ﬁ)dij - th( Iy l‘i;‘)) 2.0, (v, vin)) =0 (2.67)
k-1 k=1 k=1
where
(k) x 1 ) (k) _(
pik = 9: —-,Ic"(vi —vi“)) (2.68)
— &, &y (X 1 &) (x)__(n
= tpit PR = ) = S v - v - (2.69)

In setting up the rate of energy equality, it was stated that the internal energy
per unit mass of the mixture may not be equal to the sum of internal energies of the
constituents. Green [66] showed that if the sum of internal energies of the constituents
is defined by

n
pU = meUm (2.70)
k=1
the rate of emergy equality in the form of equation (2.58) is realized if the energy of

the mixture is defined by the equation

DU _ DU
Pﬁ =p Dt +K (2.71)
where
o
K= Z( p(k)uﬁk)U(kh'i (2.72)
k=1

c).  Other theories.

Several investigators have used the basic concepts introduced by Truesdell and by
Green. These efforts aim at simplifying the description of motion for certain special

cases. For instance, in granular porous media, the total deformation can be viewed as

B D
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made up of two parts; one related to deformation of the solid particles and the other
to their rearrangement ie. changes in pore geometry. For compressible materials, volume
fractions have been introduced as additional variables. Herein we outline some of the

results.
i. Mass Continuity Equation Using Relative Velocity

Krause [86] referring to fixed volumes in space, for continued saturation and no

mass production, wrote the mass continuity equation as

ﬁ(k) p(k)' + n(k) b(k)‘ +( n(k) p(k)'vgk))'j =0 ) (2.73)
If the materials are intrinsically incompressible, p“‘" =0. Hence, if the intrinsic density
is also spatially constant,

2%+ (V) =0 (2.74)

For a binary mixture, the above equations lead to

V(,-l) + 0 v(jz)_ vgu)l1 =0 (2.75)

Hsieh [76] added the equations of continuity of mass for each of the two constituents
in a binary mixture and, for no chemical reaction, obtained

(2)

[J+(pvf")'i+(p w), =0 (2.76)

as the mass continuity equation in terms of relative velocity. Assuming small defor-
mations, ‘he also wrote the continuity equation for. the fluid volume contained in a

fixed volume in space as
B (oo iy, e“)+( @9 ¢ (z)_u(n)) =0 (2.77)
3t P TPy )T P T\ P 3t v, i )= .
vl

Integrating over time, for compressible fluid of spatially uniform initial density

t
p=p,(1 —egjl)) + p?) f wi'i(‘r) dr (2.78)
)
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ii. Mass Balance in Terms of Porosity

Fukuo [46] used the equations of mass balance to set up equations in terms of
volume fractions of the constituents. Assuming no chemical interaction, using intrinsic
densities, he obtained:

HORC FRCHC ) (k).V(k))'i =0 (2.79)

If the kth constituent is incompressible, p** =0, and p**=0. Hence,
Bt (2*®), =0 (2.80)
Hsieh [76] considered a porous solid saturated with an incompressible fluid and under-

going small deformations. For this condition, considering a unit volume in the unde-

formed state, they showed that the fluid content change is

0= —(a?— n) = nP¢ (1) (2.81)
They also showed that

Ba; (@?- n(:)) + nﬁf’% e(j;) +w, ;=0 (2.82)

This is a relationship between rate of porosity change, the rate of volumetric strain
and the relative velocity vector. These quantities, in a theory for incompressible fluids
and no thermal or chemical effects cannot, therefore, be treated as independently vari-

able. For compressible fluids, Morland [103] proposed constitutive equations for porosity.
ili. Alternative Form of Linear Momentum Balance.

Considering balance of momentum of fixed volumes in space, Hsieh [76] derived
the local form of the momentum balance equation, for no body forces, as:
_a_z (k) (k) (k) (k) (k)) (k)
p + z (p v Z t, (2.83)
k~1 k=1

Assuming additivity of stresses, for a binary mixture, he obtained

e
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th vf')+p2)[-§—v +v(2)v +vv”]—t (2.84)

where v,=vf”-vf° is the relative velocity.

iv.  Energy Balance in Terms of Porosity.

Goodman [57] postulated the equation of energy balance for a porous material

with porosity n as
D
D—[np[(U+2vv+ K( )) bv—lL—r

f(tv +sL—qi)ndA (2.85)

Here K, s, 1 are, respectively, the equilibrated inertia, components of the equilibrated
stress vector, and the external equilibrated body force. This equation admits an addi-
tional degree of freedom, viz, the volume fraction. A kinetic energy term was associat-
ed with the rate of change of n. Similarly, rate of work terms were associated with
the rate of change of n over volumes and surfaces using generalized forces s, and L
Invariance of this equality, as in Green theory, leads to the equations of linear momen-
tum and angular momentum balance. Goodman [57] also postulated an equation of
motion, called the equation of balance of equilibrated forces, for the variable n, as

D

= np'[KL+1+g]dv fsndA - (2.86)

Here g is the intrinsic equilibrated body force. They also wrote the local form of this

equation.

V. Other Form of Energy Balance Equation Bowen [24] postulated the point

form of the rate of emergy equality as

p—e—[U+—vv]-(tv—q) +pr+2pm (x) © (2.87)

k=1
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Using an interaction force vector, Green [67] wrote the energy balance equation in

point form as

DU = pre—g — ®) ) ) (k) (), (K), (k
Poe =PT4, ¢+.§(“ vV, +2pc u, )) (2.88)
where
= () (K (k
—-— k. !
$ = T (p"uu™), (2.89)
k=1
n
pU = meUm (2.90)
k=1
and
“E” m )+ P bm fm) (®) (‘x) (291)

Mokadam [101] considered the total internal energy for the mixture to consist of
three components,

E=U+T+L ‘ (2.92)

where U, T, L, are respectively, the molecular, the kinetic, and the potential energies

per unit mass of the mixture. Identifying the diffusive force as the body force causing

mass flow, Mokadam postulated equations of balance of emergy in the form

ﬂaﬂtﬁ = ~(pUv, +q,~t,¥) +Dy, (293)

where D, are components of the diffusive force. Also

%t— = -(pLVJ) PfV (2.94)
For no chemical reaction, the above equation along with mass conservation implies

DL

TS =fv, (2.9s5)

Mokadam wrote, for no chemical reaction

5:_? = (1,v),~(pTv, +q), (2.96)
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2.3.2.6 Constitutive Relations

In order to set up constitutive equations, it is necessary first to define the
mechanical quantities for which such relationships are desired and to identify the kine-
matic or state variables on which these quantities might depeni For a mixture of sev-
eral constituents, the stresses in the constituents are obviously the primary mechanical
variables. Truesdell [163] following Maxwell [97] recognized diffusive resistance as
another mechanical variable reflecting the interaction between the constituents. The rate
of energy equality contains scalar products of "corresponding” quantities. This indicates
the need for postulating constitutive relations for components of the symmetric and the
antisymmetric parts of the partial stress tensors and an interaction quantity. Again, if
the equations of mass, linear momentum, angular momentum, and energy balance for
constituents be regarded as equations for certain quantities, constitutive equations are
required for the other quantities appearing in those equations and also for the partial
entropy of each constituent. These constitutive equations are subject to the balance

equations for the mixture and w an appropriate entropy production inequality.

There has been some difficulty in defining components of the partial stress ten-
sors. For fluid-saturated solids, the isotropic fluid stress is generally considered to be
the stress variable in addition to the stresses in the solid. Biot [11] regarded the total
stress and the fluid stress as the mechanical variables. The definition of pore-fluid
pressure used by various investigators differs considerably. Traditionally, for a water-
saturated soil, the pressure recorded by piezometers inserted into the water-filled pores
has been assumed to be the fluid pressure acting over 100 percent of the area of inter-
nal surfaces [526,74,81,90,162,175] Biot [17] pointed out that the generalized forces
defined by divergence of the stresses are correctly defined by the virtual work of
microscopic stresses per unit value of the displacements of the constituents and not as
the average of the microscopic stresses. Mokadam [100] following Guggenheim [68]

regarded the fluid pressure to be the thermodynamic property such that
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wdV = dW ’ 297
where dV is the differential change in the intrinsic fluid volume and dW the reversi-

ble work of the fluid phase.

Garg [49] Morland [103-105] Pecker [119] and Carroll [27] among others, intro-
duced the notion of intrinsic stresses for each constituent leading to

® __ _(x) (xr
to=nt (2.98)

Tsien [166] divided the total stress into stress deviation and a hydrostatic compo-
nent. The hydrostatic stress was expected to be distributed over the solid and the fluid
in proportion to their volume fractions and the solid was expected to take the entire
stress deviation. Terzaghi [161,162] as well as Green [61-67] assumed the partial stress-
es t0 act over the entire area of any surface element. Further, assuming partial stresses
to be additive, the total stress in a saturated soil, assuming isotropic fluid stress, is

= S, (2
=y (2.99)

Biot regarded the partial soil stress to be the bulk stress acting over the entire
area of internal surfaces. In his earlier work [11] there was no reference to the area
over which the fluid pressure acts. Later [12] Biot assumed the fluid pressure to act
only over the pore area. This corresponds to the notion of the fluid pressure being an
intrinsic quantity. Thus

= (0, (@ (2r
ty=gotn (2.100)

a). Diffusive Resistance.

Diffusive force, identified as the interaction force by Truesdell [163,164] was
called "diffusive resistance” by Green [62-67] and Crochet [37] Biot (18] described it

ay "disequilibrium force”. The words "friction” and "drag” have also been used. Max-
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well [97] defined it as a pair of equal and opposite forces acting on the two constitu-
ents in a binary mixture. For non-chemically reacting continua, in the absence of iner-

tia effects, the equilibrium equations for the fluid-saturated solid can be re-written as

f;)‘ +p Y = (2) Pa (2.101)

Each side of the equality represents interaction between the constituents and is set
equal to components of the diffusive resistance vector. A set of single-constituent stress-
es in equilibrium can be added to the stresses on either side without affecting the def-
inition of diffusive resistance. For hydrostatic fluid stress, the diffusive resistance is

= —(r,+p D - | (2102
where

i“’+ o5 >) (2.103)

the superposed bar indicating a set of stresses in equilibrium. Maxwell assumed the
interaction force to be proportional to the densities of the constituents and to the rela-
tive velocity. This is easily seen to be a special case of the more general relationship

indicated by the above definition of diffusive resistance.

If inertia effects are included, for a binary mixture, pi* the quantity conjugate to
the relative velocity in the energy equality is

~p, = p fl'z)_ fz)) + pc“’vf”- t;z')j_, i‘;” (2.104)

This definition is somewhat more general than the one used by Green [64,65] where
the term involving mass supply was ignored. In [66] however, following Mills [99] a

general form was stated for a mixture of n-1 fluids and a solid.

Truesdell [164] proposed a mechanical theory of diffusion and showed that the
kinetic theory, the hydrodynamical theory and the thermodynamical theory were all

specializations of his general theory. According to Truesdell: "diffusion, being a change

9
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of motion, arises from forces; the motions produced by these forces must conform to
the principle of linear momentum applied to each constituent and to the whole mix-
ture”. The sum of supplies of partial momenta to the constituents must vanish. The
simplest constitutive equation for supply of momentum would be a linear dependence
of the partial momentum upon the quantity "corresponding” to it in the energy bal-
ance equation. viz, the relative velocity of the constituent with respect to the others.
The restriction that the sum of partial moment supplies must vanish places a restric-
tion upon the coefficients. Truesdell showed that this restriction leads to the necessary

and sufficient condition
n
Far-1h=o (2.105)
1

where the scalar coefficients Ly’ relating velocity of the kth constituent with its par-
tial momentum are uniquely defined for k # j and must vanish for k =} For a binary

mixture, this implies symmetry with respect to j and k.

Mokadam {100} proposed that constitutive equations for the diffusive force have

the form

_ _ a b
px = -—Tvi— FT'i (2.106)

Crochet [37] assuming the existence of an energy function for the mixture,
showed that under isothermal conditions and in the absence of chemical reactions, the
constitutive relations will involve deformation gradients, deformation rates, velocities,
and relative vorticities. For the linear theory of irrotational relative motion, in the
absence of chemical reaction and inertia effects, and non-Newtonian behavior in a bina-

ry mixture of a fluid and a solid this immediately leads to an expression of the type

p=m, +p? 52) =-C,v, (2.107)
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The inverse form of this equation is the well-known d'Arcy flow rule [120,141] Biot
{11,14-21] and earlier investigators had used this rule as the starting point for their
theories. The observation of linear dependence of one-dimensional water flow and the
potential gradient has been extended to two and three-dimensional flow. The constant
of proportionality was enlarged to have the nature of a second rank tensor transform-
ing the potential gradient t the flux wvector. The permeability tensor is generally
assumed to be symmetric correponding to Biot’s assumption of the existence of a dissi-
pation function. Nonhomogeneity of the solid and spatial variations in fluid properties
have been allowed for by assuming the components of the permeability tensor to be
spatially varying. The tensorial character has been used to admit hydraulic anisotropy.
In case where theA solid as well as the fluid are in motion, d’Arcy’s law has been
applied to the relative velocity of the fluid with respect to the solid matrix (eg.

(14,55D.
Schiffman {144] wrote the following equations for coupled mass and heat flow

—Cji -D’.i

-], K.
B #

T? (2.108)
D.i

h
1
V. =
—_
T

where T is the temperature.

Mokadam [100-102] studied the thermodynamics of d'Arcys law under multicom-
ponent flow. Setting up an expression for rate of increase of entropy, he wrote, for

the flow of n fluids through a rigid solid:

h | L
. m ,
i C,; -A; -D,l T2 j
mi - _FB _ m
ol B, -Ej F,|{ & (2.109)
= pb, o x| T
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where h, m, v, D, denote, respectively, components of the heat flux, the diffusive

flux,the mass velocity, and the diffusive force vector. u™ is the chemical potential of
the mth constituent. For isothermal flow, in the absence of chemical reactions, this

equation merely indicates the temperature dependence of the perineability tensor.

The d'Arcy fluid flow equation has been generalized still further [58,59] and
indeed forms part of the general phenomenological equations given by Onsager [118]
These express the effect of simultaneous presence of fields of mechanical pressure, elec-
tric potential, temperature and chemical concentration. The general relationship is
expressed as

J, =L, (2.110)

where J, are the fluxes viz, mass flow, heat flow, electric current, chemical diffusion.
F, are the Prigogine forces [59,118] L, are components of a positive definite symme-
tric tensor. The components L, have to satisfy the Curie-Prigogine principle and in
some cases of system symmetry, L, would vanish where the tensorial rank of the
"forces” F, and the "fluxes” J, are not the same. Onsager [118] expected the relationship
to be symmetric ie, L,=L,. Evidently, the Onsager equation, proposed originally for
small perturbations on an equilibrium state, is a restricted type of relationship, assum-
ing a quadratic form for the entropy rate function. In general, J, can be treated as
functionals, and may depend linearly or nonlinearly on the spatial gradients, of all
orders, of the potential fields and their history. This has been discussed by Coleman
[36] in the case of heat conduction. The same type of reasoning would apply to other
flux phenomena, and the only thermodynamic restriction is that the scalar product of

flux and force be non-negative (1641

Ghaboussi (54] pointed out that Biot's [17,18] formulation for momentum balance

may be regarded as a generalization of (2.107) to include inertia effects in the body

—
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force term giving, for no chemical reaction and isotropic fluid stress, a specialization of

the more general relationship,
p, =7, +p o1 = ~Cyv, (2.111)

Using the definition of p, (2.69), a general relationship based on the correspondence of

p™® and the relative velocity v¥'—v® is

p, = 7+ b= = 2o, = —Cyy, (2.112)

b).  Stresses

It has been difficult to define the dependence of components of the partial stress
tensors upon the kinematic variables and densities of the constituents of a mixture. In
his earlier work, Adkins [1,2] assumed that the stress in each constituent depended
upon the density and the kinematic quantities associated with that constituent only.
Green [60] admitted interdependence of partial stresses of each constituent upon the
kinematics of all. This was in line with the principle of equipresence. However, to
make the independent variables distinct for various constituents, Green {60] stipulated
that the partial stresses for any constituent would depend upon the densities, velocities

and antisymmetric deformation of all constituents but only on the symmetric part of

the deformation gradient of the constituent itself. Invariance of stress under superposed

rigid body motions and under superposed uniform rigid body angular velocities of the
mixture as a whole showed that, for a binary mixture, the velocities and the rotation
tensors must occur as difference terms in the set of independent variabless Mokadam
[100] assumed the stress tensor to be a linear function of velocity gradients. Carroll
(27] and Morland [103-106], among others, also assumed that the shear traction is car-
ried by the bulk solid and is related to changes in pore geometry. The hydrostatic
stress components in the solid and the fluid were expected to cause intrinsic volume

changes in the constituents.
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Bedford [9] pointed out that flujd-saturated porous media fall in the class of
immiscible mixtures. The constituents of such mixtures remain physically separate on
a scale which is large in comparison with molecular dimensions. This immiscibility
has two important consequences. Because of physical separation, in some local sense,
each constituent will obey the constitutive relations for that constituent alone. Also,
the constituents intrinsically have microstructure defined by the inter-faces which sepa-
rate the constituents. To set up macroscopic constitutive relationms, one approach would
be to postulate these relations directly as described above. Another alternative would be
to relate macroscopic behavior to intrinsic properties of the constituents. The simplest
theories involve the volume fraction of the constituents in addition to the usual vari-
ables. Morland [103] pointed out the meaning of deformation and stress associated with
the continuum model of each constituent. In particular, the partial density variation is
not the density variation of the constituent since the mixture postulate eliminates refer-

ence to the actual volume occupied by each constituent in an immiscible mixture.

Terzaghi [161] introduced the concept of effective stress. This was defined to be
the stress component causing deformations of the soil. For hydrostatic pore-water pres-
sure acting on incompressible soil grains, the entire deformation of the soil was
assumed to be due to changes in the pore volume and pore geometry. For this case,
Terzaghi [161] called the partial solid stress the effective stress related to deformation
of the solid. Biot [11] regarded the total stress and the fluid pressure as the mechani-
cal variables. It was found (e.g. [113]D that the fluid pressure did in fact influence the
effective stress-strain relationship when the solid grains had compressibility comparable
to that of the matrix as a whole and the fluid was not incompressible. To allow for

this the effective stress related to deformation was defined as

v, = ti,—c'”a'.) (2.113)

=) +(1-c)mb, (2.114)

A.
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where ¢ = 1 implies Terzaghi's definition and ¢ = O would correspond to total stress
being regarded as effective. Suklje [160] discussed selection of appropriate values of c.
Schiffman [143] expected c to be between the value of porosity and 1. This was based
on the assumption that the pore fluid pressure may not act over the entire area of
surface elements but only over a part. This fractional area of action of the fluid pres-
sure would be bounded below by the porcsity and above by 1. Several investigators
confuse the effective ‘stress with the partial stress. This is due to the dual definition
originally given by Terzaghi. The term effective stress” used in this report is the
stress component causing deformations of the solid and is thus defined completely by
these deformations. The partial stress in the solid could conceivably be related to quan-
tities other than the deformations of the solid. Verruijt [167,168] used the term
“intergranular stress” for the difference between the total stress and the intrinsic pore-
water pressure assumed to act over 100 percent area. The relationship of "intergranular
stress” and the “effective sress” with the partial stress which appears in equations of
balance of momentum needs to be established. Considering the solid grains to be com-
pressible, Nur [113] derived the equation

c=1-KK (2119

s
where K, K, are, respectively, the bulk and the intrinsic compressibility of the solid,
For incompressible grains and highly deformable pore space, K/K,=0. and Terzaghi's two

definitions coincide. Suklje [160] suggested, without proof,

K
=1- — .
c By (2.116)

L
Schiffman [143] gave a more general form allowing fluid pressure to be a second rank

tensor and c a fourth rank tensor, i.e.,

C (2)
t =T At (2.117)
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Carroll [27] carried out a similar development. These approaches were based on superpo-
sition of effects of the hydrostatic stress and the stress deviation. Carroll [27] deter-

mined, for the linear case, the relation

t,=t,—E,Co w8 ' (2.118)

§-kimn

where E,,, are components of the elasticity tensor for the dry solid material and C‘l‘;l

those of the intrinsic compliance under hydrostatic stress. Biot [18] defined effective
stress as

t;j = tij—om'aij (2.119)

and assumed t', to be the quantity related to solid deformation. This coincides with

Terzaghi's concept of effective stress for a=1.

Garg [49) following Haimson [73] proposed a dual definition for effective stress.
For strength of rock, he would set ¢ = 1 but for constitutive relations another value

of ¢ would be used.

Carroll [28] introduced intrinsic solid stress on the solid particles and an effective
stress influencing deformation of the pore space. Kenyon [83,84] also considered the
effect of grain and fluid compressibilities and introduced material parameters to charac-

terize this dependence. Contact stress in the solid and the bulk stress independent of K,

wefe used.

For large deformation, an incremental form of the stress tensor was introduced
by Biot [20] Carter [30] and Prevost [121] used the Jaumann stress-rate to ensure

frame indifference.
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Form of the Stress-Strain Relations.

Gibson [55]) expected the effective stress to depend upon the deformation or the
rate and history of deformation of the solid skeleton. The fluid pressure was expected

to depend upon the fluid density in an isothermal system.

Tsien [167] proposed a linear elastic isotropic relation for the partial soil stress in
terms of the soil strain using Terzaghi's definition ie. ¢=1 in (2.113). Biot [11]
assumed a quadratic energy function in the change in water content per unit volume

of the solid, and the soil strains leading, for isotropic linear elastic soil and incompres-

sible fluid, to

7 = Me,, +NO A (2.120)
and

Y, = 2ue+Xe, 5, + MOBij (2.121)

In later work, [17] the total stress was replaced by the partial solid stress. In exten-
sion to anisotropic elastic {15,16] solid and compressible fluid the relationships for the

total stress and the intrinsic pore-water prssure were stated as

6 = Byl + M, (2.122)

m =M+ M (2.123)
An alternative form of the above relationships, assuming M, =aM$, and t,=t' +amd,
[16,18,19] is |

t; = By + aM8, (ael) + 0 (2.124)
and

7 = aMe )+ MY (2.125)

Here a is a measure of compressibility of the solid particless. This form was used by
Ghaboussi [53,54] for development of finite element solution procedures. Garg [50] wrote

the constitutive relations for an isotropic system in the form

K J
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w_ . @ W_1g .0
4y = aemBij + °°u8ij + 2;4.(eij jsifu))

(2.126)

m =1 = ce&)+be&)
Here u is the bulk shear modulus of the porous solid and abc are functions of the
volume fractions of the constituents, the bulk modulus of the porous solid, and the
intrinsic bulk moduli of the fluid and the solid. The constants, for isotropic elasticity
have been shown to correspond to Biots and to depend upon the properties of the con-

stituents and their volume fractions.

Similar construction was used for viscoelastic soils [12] In [20] the fluid strain
was again replaced by the change in water content. The same concept was extended to

the case of finite elastic deformation [21]

Lubinski [93] assumed that the total strain of a bulk porous solid can be
expressed as a summation of the strains due to pore-water pressure and strains due to

stress acting on the solid skeleton. He proposed relations of the type

(1) (1 (n
ti; = Em.u.e‘:l +(n" —y)w&ij (2.127)
7 = M+ N(2@-nl) (2.128)

where y, M, N, are material constants. Krause [86] added terms to the right side of
(2.120) to reflect linear dependence of the fluid pressure on the deformation rafe of
the fluid. This assumes a viscous component for fluid flow. Adkins, in his earlier
theory [1,2] assumed that the stress in each constituent depended only on the density
and the kinematic quantities associated with only that constituent. Nur {113] assumed
the effective stress, given by (2.113) along with (2.115), to be related to the soil
strains. This admitted a certain dependence of the partial soil stress upon the fluid

pressure. Explicitly,

9
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t, =t +(1=cm§ =C e (2.129)

Hence

4 = Cumi—(1-c)ms, : (2.130)
These approaches were based on the superposition of effects of the hydrostatic stress

and the shear stress. Carroll [27] determined, that for the linear case, (2.130) would be

0

i = Eufu ~EuCuna™ @
where E,, are components of the elasticity tensor for the dry solid material and Cf,::
are those of the intrinsic compliance under hydrostatic stress. This formulation was spe-
cialized to allow for the presence of intermal symmetries. For isotropy, the formulation

reduces to Nurs [113] Schiffman [143] proposed a more general form of (2.131) viz,

6 = E e~ (8,8, —A, )6 (2132)

ij
The quantity A,,, was termed the soil-water interaction tensor. Garg [49] obtained a
relationship between the intrinsic and the bulk behavior of rocks under hydrostatic

stress.

In extending the theory to the nonlinear case, Westmann [170] assumed the par-
tial solid stress to be a function of the deformation tensor for the solid and the rate
of deformation (Eulerian description) of the fluid. The fluid stress was expected to con-
sist of a hydrostatic component and another component depending upon.the same quan-
tities as the partial solid stress. It was noted that in this formulation.it would be dif-
ficult to design experiments to evaluate the parameters. A simplification proposed
assumed the fluid pressure to be hydrostatic and related to the velocity field through
d'Arcy’s law. This is similar to Sandhu's [131-133] argument that the constitutive equa-
tion for diffusive resistance is a sufficient relationship between the fluid partial stress

and kinematics of the mixture. Westmann [170] wrote relative velocity as a function




——

47
of the partial fluid stress, the diffusive resistance and the Cauchy deformation tensor
for the solid. This would reflect, among other factors, the dependence of permeability

on the porosity of the solid.

Morland [103] and Garg [49] assumed the intrinsic stress in each component to be

a function of the deformation of that constituent only and having the same form as
for a single material. Thus

&r _ (k)r

vy = fle, ] (2.133)
The bulk stresses and deformations were expected to be related to the corresponding
intrinsic quantities through scaling functions. Thus, the bulk stress in the kth constit-
uent is

® _ _(x) (k»

t; =0t (2.134)
For linear isotropic elastic rock

(1 _ (1 (1 (1

¢ = 0Ky e (2.135)
where the subscript D denotes "dry” rock. The bulk deformation gradient was related
to the effective deformation gradient as:

* o [N, (Eh1/3 1)

F, = [2“/n0)"*F] (2.136)
The relation between the deformation gradient and the partial soil stress was expected
t be the same function f as for the intrinsic quantities. The isotropic pressures in the
fluid and the solid were assumed to depend upon the volumetric strain of both the

constituents, i.e.

- 2t (2)
v, =ae,, + be 2137n
7= ce::n + degzn (2.138)

However, unlike Biot, the existence of an energy function was not postulated so that

the constants b and ¢ in (2.137) and (2.138) do not have to be equal. Morland

0 . o
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expressed the coefficients in terms of compressibilities of the fluid and the solid, and

the bulk shear modulus of the mixture.
Carroll [29] postulated the following relations for a fluid-saturated solid:

i Relation between stress in the mixture and stresses in the constituents:

1 1 _mmw, (. =
Etﬁ_'fn t, tow . (2.139)

ii. Solid stress-strain law

1. _ _ N
Etjj = K'—V“—) (2.140)
where the symbol A indicates change in the quantity following it.
iii. Effective stress-strain law:
(2)
1 _ 1 ¢ __.+*An
Etﬁ = -3—tjj " = K T(l-)— (2.141)

Combining these relationships they obtained the bulk relations for the mixture.
Thermodynamic considerations.

Adkins [3] and Green [60] admitted interdependence of stress of each constituent
upon the kinematics of all. This was in line with the principle of equipresence stated
by Truesdell [164] In application to elastic materials, the existence of an emergy func-
tion for the mirxture was assumed by Biot [11,14—16.19-21]. This has been consistently
followed by numerous investigators (eg. [6,7.25.37,39,62-67,159D. Sandhu [131-134]
pointed out that as the mixture could not be regarded as a continuum in motion, it

was inappropriate to assume energy functions for it in the form that has been popular.

Sandhu [131-134], Westmann [171] and Morland [103-105] followed Adkins' [2]

original idea that the stresses in each constituent depend upon the kinematics of only
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that conmstituent. However, Morland [103-105] used this for the intrinsic rather than
the bulk stresses. This brings back some dependence of the partial solid stress upon the
fluid pressure because the porosity was postulated to be a linear function of the par-

tial stresses.

Seeking constitutive equations for internal energy, entropy, heat flux vector, par-
tial stresses and diffusive resistance vectors p, and the quantity q—hmn, in the case of
mixture of two Newtonian fluids, Green [62] assumed these to depend upon the densi-
ties of the constituents, the velocities, the gradients of velocities, and the temperature.

For the heat flux vector, the temperature gradient replaced the deformation gradients.

Discussing thermodynamics of fluid flow in a rigid porous medium, Mokadam
(101,102] pointed out that d'Arcy’s law is valid only for isothermal flow in which the
inertial and viscous effects are negligible. Also that the rate of entropy production
must be non-negative separately for terms involving quantities of different tensorial
ranks. Crochet [37) applied thermodynmic considerations to the flow of a fluid through
an elastic solid. Atkin [6] explicitly stated the form of these constitutive assumptions
for flow of a fluid through an elastic solid. He also presented an alternative method
of deriving the linearized theory of elastic solid-viscous fluid mixtures and the thermo-
dynamic restrictions imposed on this theory by the entropy production inequality. In
later. work, Green [67] based the thermodynamic restrictions on the behavior of each
constituent on the requiremeni that suitable combinations of the equations for individu-
al constituents should yield a single entropy production inequality for the mixture as a
whole. Bowen (23] noted that these formulations lead to the result that, in equilibri-
um, the partial free energy demsity of a given constituent is independent of the defor-
mations of the other constituents. Also that such independence fails to be confirmed by

experiments on fluid mixtures. Muller [108] showed that if gradients of densities of




50
the constituents were included among the constitutive variables, this difficulty would

not arise. Some investigators have proposed use of an entropy production inequality for

|
g

I

t

|

F each constituent. Bowen [23] considers this to be too special.

[ Morland [103-105] did not assume the existence of an energy function for the
:

mixture but still admitted interdependence. This implies admitting a possibly nonsym-

F metric constitutive relationship of the type proposed earlier by Schiffman [143] For ¢
! = porogity, the constitutive equations for stresses become uncoupled.
|

. Crochet [37] started by admitting fairly general constituive assumptions in line
with Truesdells [163] principle of equipresence, and then determined the restrictions
; placed upon these general constitutive relations by thermodynamic considerations. This
!‘. approach is similar to that used by Noll [111] and Coleman [36] Crochet [37] showed
i that the restriction of nonnegative entropy production requires that the entropy and the
internal energy be independent of the deformation rates, relative velocity and the temp-
erature gradient. Green [66] extended Crochets [37] work to anisotropic solids and to

include initial stresses.

d.  Constitutive Relations for Porosity.

Gibson [55] treated porosity as a function of effective stress and proposed compliance

relationships in the form

Xj.t) (2.142)

q 2? = ¢,
] 4

Walsh [169] regarded the pore space or the volume fraction of the pores to be a

function of the solid stress. This leads to the relationship:

dn? _ 1 av? P av _ 14v? _ VP av

ar’ Vgl Vgl VgD 2 g
)Y 4 b U Y]

(2.143)
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.Garg [49] pointed out that Walsh's analysis was acceptable for very dense rock. For the

general case, they introduced bulk and intrinsic solid compressibilities and set up more
general expressions. They proposed constitutive equations for porosity based on the exis-

tence of an energy function.

Aifantis [4] assumed effects of changes in fluid pressure and the solid stress to
be additive and proposed a compliance relationship

An'? = aawr + bar? (2.144)

Assuming the intrinsic properties of any constituent are not affected by the pres-
ence of the other constituents, Morland [103] proposed a constitutive equation for poros-
ity in the form

n? = g1+ “(j;) +bm) (2.145)

To include dilatancy, the relationship was generalized further to

2? = 01 +a, 6" + o) . (2.146)

2.3.2.7 Comments.

Various approaches to description of the constituents and the mixture as well as
description of their motion, formulation of the equations of balance of mass, linear
momentum, angular momentum, and rate of energy, and the constitutive relations have
been discussed. In most theories _of mixtures, deformation is referred to an initial con-
figuration for each constituent and motion to the piace coordinates. Also the equations
of balance are written for a fixed volume in space. This approach may not be conven-

ient for soil-water mixtures.

Truesdell [164,166] postulated equations of balance of mass, linear momentum,
moment of momentum and energy such that the form of the equations was the same

for each constituent and for the mixture. The notion of motion of a mixture as a

po
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whole was introduced. Indeed, Truesdell would require the form of the equations of
balance for the mixture to be the same as for a single material. To accomplish this
identity of form, the total stress temsor, the total heat flux vector, and the specific
energy supply had to be specially defined and did not equal the sum of the corre-
sponding quantities for the constituents. The specific energy (internal plus kimetic) of
the mixture was, however, equal to the sum of the corresponding quantities associated
with the constituents. The existence of the mixture as a continuum in motion with
acceleration derived from the barycentric velocity is implied in this line of thought.
The analysis was founded on the so-called fundamental identity involving “material
derivatives of the mean value”. Whereas these can be accepted as hypothetical entities
for simplification of analysis, it is difficult to assign a physical meaning to them. This
material rate has, in Atkin's [7] words, "no particular physical significance”. This is so
because the rate is executed not on a material particle but on a center of mass. The
mixture, at any instant of time, has been constructed by superposition of constituent
particles, is not a set of particles, consists only of centers of mass, and is defined only
for the particular instant of time. It cannot be regarded as a continuum, consisting of
a set of non-penetrating particles, in motion. Atkin [7] pointed out that the mixture
density cannot be associated with a material in the physical sense. Sandhu [133,134]
pointed out that the mixture defined above has a physical existence only in the case
of no relative motion between constituents. For this special case the mixture will have
motion and deformation as a material body and the development of equations of
motion for the mixture is meaningful, for example, in the post-liquefaction stage. How-
ever, in study of wave propagation leading to liquefaction of soils, it is of little inter-
est. If relative motion is present, the mixture does not satisfy the axiom of continuity
and its corollary, the principle of impenetrability. Accordingly, the mixture density,

momentum, moment of momentum and energy defined by Truesdell are only mathe-
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matical entities without any physical interpretation. These quantities cannot be regarded
as functions of time associated with a set of physical particles. Truesdell's third postu-

late, therefore, appears to be irrelevant to the development of a general theory.

Chao [34] noted that combining the balance equations of constituents to obtain the
balance equations of the mixture can lead to errors. As an example, the absence of
inertial coupling forces in the momentum equations of the constituents was cited. This

is contrary to Biot's "mass coupling” assumption.

On the other hand, Green [62] considered the concepts of stress, heat flux, and
energy supply to be primitive to each constituent and to the mixture as a whole as
well. The additive property of stress, heat flux, and the energy supply was postulated
and the balance laws derived from the frame invariance of a rate of energy equality.
The energy density of the mixture was seen to be different from the sum of energy
densities of the constituents. This was attributed to interaction between the constituents.

Green [66] established a relationship between these quantities.

The balance equations due to Truesdell [164,166) and to Green [66] have similar
form and are essentially equivalent but the quantities appearing in the two sets have
different interpretations based upon the relationships postulated between the quantities
associated Wwith. the constituents and with the mixture. Gurtin {69,70] and Morland
(103] support the additivity of partial stresses on the ground that tractions are additive
and Cauchy’s stress principle should hold for total stress and total traction as well as
for the constituents. In Green's theory, the equations of mass and momentum balance
are derived from the material frame invariance of a rate of energy equality. In
another discussion the heat fluxes and the energy supply were assumed to be additive.
In another, more recent version of the theory, Green [64] made the role of interactions
between constituents explicit by writing the rate of energy equality for each constitu-

ent.
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Bowen [24] postulated the point form of the rate of energy equality and pointed
out the effect of certain approximations. He claimed that Green's theory is a special
case of Truesdells. This is not true. The interpretation of quantities appearing in
Truesdell's equations is quite different from that of similar quantities in Green's theory
because the two formulations are based on different definitions for the quantities asso-
ciated with the mixture in terms of those for the constituents rather than due to any

approximation.

Westman (170] noted that while writing mass continuity relations care must be
exercised because the volume of each continuum phase i8 not the same as the true vol-
ume of each material. For the case of initial stresses, equilibrium must be satisfied in

the initial as well as the deformed configuration realized after incrementation of stress.

In recent work by Gurtin [69,70] Oliver [116,117], Williams [171] and Sampaio
[129,130] the equations of balance of momentum and energy differ from those of
Truesdell [163,165] and Kelly [82] They showed that extension of the traditional theory
for single materials to mixtures by simply replacing the forces by "total force” is inad-
equate to express balance of forces for other than pure constituents. In addition to the
partial stress for each constituent, they obtained embedding stresses governed by addi-

tional balance of force equations.

Several investigators have introduced volume fractions as additional variables in
theories for compressible materials. The balance equations have been written in terms
of relative motion and porosity, which is essentially a measure of relative deformation.
Fukuo's [46] equations of mass balance may be regarded as an extension of Gibson's [S5]

approach_of . referring to the fixed set of particles in the reference configuration.
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In Gibson's theory of one-dimensional nonlinear consolidation, the equation of
equilibrium of vertical forces associated with reference volume of the solid in the ref-
erence configuration were written for the current configuration. The density was relat-
ed to the densities of the constituents in the current configuration which in turn
depended upon the volume fractions of the constituents. Beacause, in this representation,
the description of the solid phase is unaffected by deformation, the equation of mass
continuity for the solid is simply the equation relating the current density to the ref-

erence density of the solid.

The definition of diffusive resistance or the interaction force, given by Green
[62-67] appears to be appropriate. as also writing constitutive relations for it in terms
of relative velocities of the constituents. For the simple case of a binary mixture, eg. a
saturated soil, the linear dependence of the diffusive resistance upon the relative veloci-
ty is essentially a statement of the phenomological observation by d'Arcy. Biot assumed
the existence of a dissipation function, quadratic in relative velocity. This corresponds
to the assumption of a linear dependence of velocity upon the pressure gradients. Moka-
dam [100] pointed out that d’Arcy’s law is valid only for isothermal flow in which
the inertial and viscous effects are negligible. Generalizations of d'Arcy’s law to thermo-
mechanica) mixtures and simultaneous mechanical and chemical diffusion along Onsager's
principle form a part of the general theory of mechanical diffusion presented by

Truesdeil [165]

For stresses in the constituents, several descriptions have been used. Constitutive
equations need to be written for the partial stresses that appear in the equilibrium
equations. Biot [18,19] wrote the equations of momentum equilibrium for the mixture
using the total stress. In soil mechanics, it is well known that constitutive equations

for the total stress are very semsitive to the pore-water pressures and the effective
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stress is preferred for the purpose. Terzaghi [161] used a dual definition for effective
stress. It appears reasonable to define it as the component of soil skeleton stress which
is related to the kinematics of the soil alone. According to the other definition the
effective stress is the difference between the total stress and the intrinsic pore-water
pressure. Verruijt [167,168] calls it intergranular stress. This definition appears to be
unnecessary except in the case of the so-called double-porosity soils in which the soil
grain compressibility is taken care of separately from the deformation of the soil as a
whole. The relationship between the deformations of the grains and the voids on the
one hand and the total soil mass on the other has been established for the double-

porosity materials by several investigators [e.g. Carroll]l

Biots [18] and Crochet's [37) assumption of the existence of an emergy function
for the soil-water mixture is open to objection. The mixture consists of centers of mass
and not non- penetrating material particles. As such it does not satisfy the axiom of
impenetrability and it is not correct to assign deformation, material rates, energy etc. to
this entity. Thus the stress-strain relationships for the fluid and the solid may not be
derived from an energy function. Biot's [18,19] theory based upon the existence of an
energy function quadratic in the strains of the soil and the water content or the den-
sity or the isotropic strain in the fluid is thus arbitrary and restrictive. Garg's [48,49]
formulation also is similar and the constants can be shown to correspond to Biot’s.

Garg related these to the properties of the constituents and the volume fractions.

The argument over whether the stresses in any constituent depend upon the kine-
matics of that constituent only or that of all the constituents is easily resolved noting
that the partial stress need not coincide with the effective stress. The difference
would depend upon the compressibility of the fluid and the soil as well as upon the

connectivity of the pore space. We find Bedford's (9] argument that, in some local
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sense, each constituent will obey the constitutive relations for that constituent alone
quite appealing. To set up macroscopic constitutive relations, one approach would be
to postulate these relations directly and the other would be to relate macroscopic
behavior to intrinsic properties of the constituents. Apparently, the thermodynamic
restrictions on entropy production as well as the notion of energy density are applica-
ble to each constituent. Bowen's [24] comments regarding mixtures of fluids need fur-

ther careful investigation.

Morland [103-105] did not assume the existence of an energy function for the
mixture but still admitted interdependence in constitutive relationships. This implies
admitting constitutive relationships with possibly nonsymmetric coupling effects of the

type proposed earlier by Schiffman [143]

Some theories involve the volume fraction of the constituents in addition to
the usual variables. Morland pointed out that the partial density variation is not the
density variation of the constituent since the mixture postulate eliminates reference
to the actual volume occupied by each constituent in an immiscible mixture. A correct
theory would ensure that deformation be associated with a set of particles rather than

with a fixed volume in space.

For a statistically isotropic saturated material, Biot expected the kinetic energy of
the saturated soil to be quadratic in the velocities' of the fluid and the soil and a
coupling term was included. This introduced an inertial coupling betwe;:n the soil and
the fluid. It is difficult to assign numerical values to the various quantities that arise
as a result of this coupling. Implementation of this theory in a finite element com-
puter program, and a preliminary parametric study to investigate the efect of this
coupling on the dynamic response, indicated that the effect would be insignificant.

However, further study of this particular feature is needed.

K
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It appears that a theory of dynamics of saturated soils should use a convected
coordinate system to define the motion of the soil so that the same set of particles
constitute the reference volume. The flow of the fluid should be considered as relative
to this reference set of soil particles. Stress would be defined 'in terms of these con-
vected coordinates and the balance equations would then be written for the reference
set of particles. This would represent a generalization of Gibson's theory of nonlinear
soil consolidation to three-dimensions and also to include inertia effects. For slow flow
and small deformation, certain simplifying assumptions would lead to Biot's theory. The
soil and water have relative motion prior to liquefaction. At liquefaction, the relative
velocity reduces to zero and the soil-water mixture would move as a single fluid.
Development of constitutive equations would involve the thermodynamics of the con-
stituents including their interaction but it would not include assigning physical mean-
ing to a "mixture in motion”. Constitutive and inertial couplings might exist. How-
ever, symmetry of these couplings cannot be apriori claimed on the basis of the
existence of energy functions for the ‘mixture. The next section describes such a theory

developed by Hiremath [75]

o
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Section I

A DYNAMICAL THEORY OF SATURATED SOILS

3.1 INTRODUCTION

In existing theories of mixtures the multicomponent mixture has been regarded as
a set of superposed continua in motion. The mixture, at any instant of time, has been
defined as a set of particles constructed by superposition of constituent particles. In
reviewing theories of mixtures, including their possible relationship with mechanics of
saturated soils and liquefaction phenomena, an important finding was that the notion
of the mixture as a continuum in motion is inadmissible except in the case of no rela-
tive motion between the constituents. Liquefaction is primarily caused by the relative
motien of soil and water and, thei-efore, a correct theory of liquefaction cannot be
derived from the assumption of the saturated soil being a mixture in motion as a con-

tinuum.

Because the mixture cannot be viewed as a continuum in motion, it appears inap-
propriate to define energy functions on the "mixture” consisiting of centers of mass.
This implies that in setting up constitutive relationships for the mixture, one cannot

invoke the existence of an energy function.

Some investigators (e.g, (46,76,86) considering the special problem of flow
through deformable porous solids, have attempted to write the balance equations in
terms of relative motion and porosity, which is essentially a measure of relative defor-
mation. It would appear that a theory based on balance equations written for a refer-
ence set of particles of the porous solid would be the most appropriate for this case.
Gibson [S5] developed such a theory for the quasi-static problem.
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Hiremath developed a [75] theory of dynamics of saturated soils based on use of
convected coordinate system to describe the motion of a fixed set of soil particles in a
reference volume and regarded the flow of water to be relative to this volume of the
soil (Item 4.5 in Appendix B). This theory may be regarded as an extension of the
concepts presented by Gibson [55] for the case of one-dimensional quasi-static deforma-
tion of soils, to three dimensions and to include inertia. In the remainder of the sec-

tion we summarize the salient features of this theory.

3.2 KINEMATICS

Description of motion, deformation and stress in a single continuum using con-
vected coordinates is well known {[112] and is summarized in Appendix A. Here we
describe the simultaneous motion of a compressible solid and a fluid with low com-
pressibility. A material volume V, in the reference state C, upon motion and defor-
mation, occupies a volume V in state C. The material volume throughout its motion
encompasses the same set of particles. The convected coordinate frame, assumed for

convenience to be rectangular cartesian in the reference configuration C, is, in general,

curvilinear in any other state. The strain in the solid, y, is defined as (A.108)

W _n_ 1) ) (1 1)
7y -Egj —?[u R NS & S m'j] 3.1)

Here Ej’ are components of the Green's strain tensor and u®, are components of the
solid displacement referred to the cartesian system in C, The fluid is assumed to be
isotropic and, in view of its low compressibility, the components of the strain tensor

for the fluid, 7:’,’. referred to a cartesian system in C, are

(2) _ (2 _ (2
Yo = = Uiy 3.2
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3.3 BALANCE LAWS

3.3.1 Mass Balance of the Solid
If p and p¥ denote the mass densities in the configurations C, and C respectively, of

a volume element containing the same set of solid particles,

= ol 6 (33
and
oV = 0 o (3.4)

in which n{” and o are the solid volume fractions in the initial and the current con-
figurations, respectively, and a superposed asterisk denotes an intrinsic quantity. This

leads to an equation of mass balance in the form,

[pi)l)‘ n(ol)dv°= l.p(l)' n(l)dv (3.5)

V, and V denote volume of the same set of particles in G, and C, respectively. Using

(A.126),

f[p?"n?’-ﬁp‘"n“’] dv, =0 (36)

The point form of this equation is
p(ol)' ngl) = J‘Ep(l)'n(l) ’ 3.7
If the solid is incompressible, pi* = p%" and

ng) = JGa" (3.8)

9
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3.3.2 Mass Balance of the Fluid

The motion of the fluid is relative to the solid and the fluid itself does not have a
reference state. Mass continuity of the fluid constituent is described for a solid vol-

ume in the current configuration.

Consider a rectangular parallelopiped of the solid at point P, in the reference con-
figuration C, which corresponds to a skew parallelopiped at point P in the current
configuration C. The parallelopiped in C, is made up of surfaces x, = constant and

x, +dx, = constant (Figure 3), and during motion, encloses the same solid particles.

Recalling (A.110) and (A.112), the velocities of the solid and the fluid in terms

of the base vectors ¢, and G, (or G') are

W_ (mpm _ (Dam_ (1)

vi=v "G =v G =u_e_ (3.9)
and

V=ymG =vP6m=y?Pe_ ’ (3.10)

The components ﬁ‘:’ (k =1,2) are quantities associated with the reference state. The
face of the perallelopiped formed by the sides dx’ and dx® in the reference state
becomes an area formed by the vectors G, dx’ and Gydx’ in the deformed state. Thus,
the mass flux per unit time entering this face is

2@ 6P [ - (M ay? ax . (3.11)
The mass flux leaving the opposite face is

n(z) p(z)'[ﬁ(lz)_ﬁ(ln)] dxldx® + 337 {n(z) p(z)'["l(lz)_‘-x(ll)] dx'} dx? dx’ (3.12)

The net rate of gain including the fluid flow in all the three-directions is,

D (@, [0 — M) dx' dx? ax’ (3.13)
a_xl

The rate of increase of fluid within the deformed parallolepiped is
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Figure 3: Geometry of an Infinitesimal Parallelepiped
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_gt_ [n(z) p(z)' JGdx' dx?dx?) (3.14)

Adding (3.13) and (3.14) and cancelling dx'dx’dx’, the equation of fluid mass continu-
ity is

gt_[n(z) 5P JG1+ i_‘ 0?p @ -} =0 (3.15)

333 Balance of Momentum of the Fluid Phase
Consider the elementary parallelopiped that is rectangular in the reference config-
uration and is transformed into a skew parallelopiped in the current configuration (Fig-

ure 4).

Let -t,‘” denote the stress vector of the fluid phase acting normal to the surface

formed by the vectors G,dx’ and G,dx’. The net force due to this stress across the

surface is, noting (A.132) and (A.142);
-t(lz) veo'laxlax® = 'l‘(f) dx’ax’ (3.16)
The internal forces on the six faces of the parallelopiped then are;

_.r(lz)dxzdxa' T(lz)dxzdxa + -a-l-'l’(f)dx'dxz dx?
ox

-TPa'de’, Pal'a’+ L 1Pala’a’ (317)
8x

~TPaxr'ar?, Tar'dx’+ &L TPax' ax’ax’
613 3

Similarly the net body forces, inertial forces and viscous coupling forces, respectively,
acting over the deformed volume VG dx'dx’dx’ are;

P F2, p(z)l_.(zz)' p‘z’l-“:’] JGdx'dx?dx’® (3.18)

[‘P(z)f(nz)- ‘P(Z)f(:)v - p<z)ijz>] JGdx'dxldxa® (3.19)
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’l'(;)dxl dx’+ —a? 'I'(32"dxl dx’dx’

Figure 4:

ox
(2) I 3 .
T, dx dx +—%T(22)dx'dx2dx‘
—'I'mdxzdx3 oz
1
p/
»
—'1"(22)(!):':1:3
T dx' ax?

T dx’dax’ + & Tax' ax?ax’
ox
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{- D(V(Z) (,l)). —D(v(:)—v(;)). —-D(v(:)—vgl))} JGdx'dx®ax’
Summing up the forces and setting the total equal to zero for equilibrium,

"'QTT(i”"' \/ap(z)F(z)_ J@p(z)f(z)_ J@D[v(”-—vm] =0.
o

Upon use of (A.141), and rearranging

J" _Q_[ JG PG 1+ PP F? = g P 6D 4 p(v'? — v V)
&'

Recalling (A.110), (A.111), (A.112) and (A.113) along with (A.143) gives

T(Z)ij‘i+p(2)F(2)j= (2) f(Z)j+D[v(2)j_v(l)j]

(3.20)

321

(322)

(323)

Alternatively, using (A.114) one can refer the quantities in (322) to the reference state

C, and write

—6—,[\/’61(2)Uz e ]+\/ap(2)P(2) _\/—p(z) (2)e +\/§D({1(2)—l’1(”)e
axl m,j m m m m’ m

which gives, by (A.150) and (A.151),

(z)u (2) ol2) _ (2)* (z) (z) (1

2, )+ VG PP D = V6Pl + VG DY - i)

or

[s:)i],i"' \/Epmf-‘:)= (z) (z)+ J_D(u(z) *( 1))
For isotropic fluid,

(2)i _

S, —1r8‘n
Then (3.26) gives,

".m+ \/GP(Z)F(:)= (2) (2)+ J"‘D(u(l) . l))

(324)

(329

(3.26)

327

(328)
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3.3.4 Balance of Momentum of the Fluid-Saturated Solid
Considering the reference set of solid particles in the current configuration of the

deformed parallelopiped Figure S, let —t, denote the total stress vector acting on the
strained body per unit area formed by the vectors G,dx’ and G,dx’. The net force
across this surface using (A.142) is,

-T,aer® = —t, V66" ax’ax’® (329)
The other quantities viz. T, and T, are defined likewise by cyclic permutation and are

shown in Figure 5. The forces on the six bounding surfaces are:
-T d’d®, T dx’dx’+ -4 T dx'ax’ax’
1 1
o
-T,dx'dr’, T,dx'dx’+-& T,dx'dx’dx’ (3.30)
o’

-T,dx'dx’, T,dx'dx’+ 0T dx'ax’ax’
ax

For FP=F?=F the body forces and inertial forces acting over the deformed volume
VGdx'dx’dx® can be expressed as,

[oF, oF, pF,] VGax'dx’dx’ (3.31)
and

[-{bmf(,”*‘P(Z)f(f)}- ‘{me(z”*'l’(»flz»}v -{p“)fg”+p('2)fg”}]\/5dx'dxzdx3 (3.32)

Summing up the forces, we have,

9T+ VGpF= VGl + P £ (3.33)
ox
Using (A.141) in (3.33)
—;—5-:;—l[\/_équjJ+pF=p(l)t‘“)+p(2)fm (3.34)
Recalling (A.62), and (A.110) through (A.113),
‘r"vll+pF’=p(”f“”+p(2)fmj (3.35)
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T.dx'dz® + -9 T, dx'dx?ds®
3 ax3 3

'I'zt:ixl dx’ + 9 T2 dx'dx’dx’
axz

=T, dx’dx?
B .
P .
»
- 1,3
x T,dx dx
3 .
—Tsdxldxz
o T, dx’dx’ + & T dx'dx?as’
X ox' !

Figure 5: Equilibrium of the Fluid-Saturated Reference Volume in the Current Con-
figuration
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Referring quantities in (3.34) to the reference state C, and using (A.150) and (A.151),
two alternative forms of (3.34) are,

s" sz].l +JGpf = \/_Gpu)'ﬁ:) + \/_G.p(z)'ﬁ:) (3.36)
and

i - (1)°:(1) (2)+:(2)
[S.1.+ VGpf_=VGp 'u, +JGp ug (3.37)

335 Balance of Angular Momentum of the Fluid Saturated Solid
In absence of body couples, the angular moments of these forces with respect to

the deformed axes along G, are given by,

—(T,xR)dx’dr’, (T, xR)dx’dx®+ & (T, xR)ax' ax’ax’
&

—(T,xR)dx'dx’, (T,xR)dx'dr’®+ L (T, xR)ax' ax’ax’ (3.38)
o

—(T, xR)dx' dx®, (T,xR)dx'dx’ + & (T, xR)ax' ax’ax’
&

For body forces and inertial forces the angular moments are, respectively,
[oF, xR, pF,xR, pF,xR] VGdx'dx’dr’ (339)

and

[_{p(l)f(1)+p(z)f(2)} _{p(t)fix)+p(z)f(z)} _{p(l)til)+p(2)f(2)}]
1 1 2 2 3 3

xR VGdx' dx’dx’ (3.40)
Summing up the moments, |
g-i(rixnn(prxn)JG—-{p“’f‘”ﬂ‘”f‘”} x RJVG=0 (3.41)
or, by (A.38) and rearrangement of terms
[%—;‘-+\/apF—\/a{pmt‘m+p(2)f(2)}]xR+TixGi=0 (3.42)

Noting (3.33) and (3.42)

K




70

T,xG,=0
Using (A.141), this gives

JG1' G,xG, =0

which is same as
=
Further, in view of (A.103),

S=s

(3.43)

(3.44)

(345)

(3.46)

(347)

The bulk stress tensors, 7" and s", are symmetric. This i8 in line with Green's [64]

assertion that the partial stresses need not be symmetric but the total (bulk) stress is

symmetric.

34 SOME SPECIALIZATIONS

3.4.1 Specialization to One-Dimensional Problem

The direction x, is referred to simply as x and the associated quantities are denoted by

a super- or sub-script x.

A a). Kinematical Quantities

From (A.86) and (A.87),
z=z2(x,7)

and
x(r=0)=a

For the motion to be possible, from (A.S),

(3.48)

(3.49)

K




T

n
11> 0 ' (3.50)
3x
The position vectors of points P, in C, and P in C are, respectively, ((A.77) and (A.78))
r=xe=ae : (351)
R=ze (3.52)

The displacement Vector, u, is (A.79)
u=R-r=ue (3.53)
u=z—x=2—a (3.54)
The base vectors, G,, G* and metric tensors G, G™ may be defined for the system x

in the body at time t. From (A.97) through (A.99), we have in one-dimension,

Gx=k"=%e=(l+%;-)e (3.55)

G*= % e (3.56)

= .G = .E. E =(1 ﬂ L 1+2 ﬂ ﬂ 2 7

G, =G,.G, = & ( +ax) + ax+(ax) (357)
=B & (358

e & )

The line elements are given by (A.101) and (A.102),

ds’=G_, dxdx (359)

ds) =drdx (3.60)

The strain tensor, using (A.100) is,

yu.—_%(Gn—l)=%+%—%xu— .g%- (3.61)
The changes in volume are obtained from (A.123) and (A.126) as,

dVv,=dx (3.62)

dv = JGdV, (363)

where,
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=16 1=+ 1= (1 + P42 =(8) 3.64
= B =14 L= () (3.64)

(3.63) and (3.64) give
av=0+)ax ‘ 3.65
(+8x) (3.65)

The expressions for velocity and acceleration derived from (A.110) through (A.123) for
one-dimension are,
v=ue=v'G, =v, G (3.66)

f=ue=f'G =f, G" , (3.67)

b). Mass continuity of the solid.

From (3.7)

RO P (3.68)
Using (3.64), mass continuity in one-dimension

pgx)'ng)= % p(l)'n(l) . (3.69)

This expression is the same as Gibson's [55]

c). Mass continuity of the fluid.

From (3.15) ‘
é’{ [2? ¥ VG)+ g} 0? @ My =0 (3.70)
which, upon use of (3.64), is
% (@ " % 1+ 561_ n? g @ —aMy=0 (3.71)

This is the same as Gibson's equation [55]

‘.L
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d). Momentum balance of the fluid.

(3.28), for one-dimensional analysis, using (3.64) is;

o L& S G erid L g (@ ay (3.72)
ox o . ox « '
If the inertia term is neglected, Gibeon's [S5] equation for quasi-static analysis is recov-
ered viz.
%_ + g‘p‘”ﬁ‘:)= % .'L:_ n(z)(ﬁ(z)_ﬁ(l)) (3.73)

¢). Momentum balance of the fluid-saturated solid.

Recalling (3.64), for one-dimension, (3.37) is

[Sx‘]“"’ %P?‘= %p(l)'&(l)+ %p(Z)d(Z) (3.74)
Ignoring the inertial term, we recover Gibson's [55] equation of motion for the bulk
viz,

3,
3

+pb % =0 (3.75)

342 Small deformation Theory

Biot's [17,19] equations for small deformation theory are embedded in the general
theory presented in this work as a specialization. ‘Assuming small strain, explicit forms
of coniinuity equations are not required as the changes in density are small. All
quantities are referred to the initial state with rectangular cartesian system as a frame
of reference. In that case, the distinction between the contravariant and covariant com-

ponents dispppears. The kinematical relations in (3.1) and (3.2) reduce to

W_n_ 1), (2
Yy _E(U —7[u'.)+u.ﬂ)] (3.76)
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The momentum balance equations in terms of the bulk stress t, and the partial pres-

sure 7 are obtained from (3.37) and (3.26), respectively, as
t,,tPF = pm.ﬁf‘) + p(2)11§2) 3771
7 +p?F =p 2@ + D - i) | (3.78)
which is often also written in the form;

w467 F = gD 4 O - () (3.79)

The above equations are the same as in one formulaion of Biot's theory. Subtracting

(3.78) from (3.77), an equilibrium equation in terms of the partial solid stress is o)
obtained viz.
tgljl')).*p(l?Fi:p(x)-ﬁin)_ % n(z) n‘”[ﬁﬁ”—ﬁ?)] (3.80)
@

Comparing with Biot's [17,18] equations, (3.79) and (3.80) do not have the mass

coupling terms.

.0

35 CONSTITUTIVE RELATIONS

The issue of defining mechanical quantities for which constitutive relationships
need to be defined has been discussed in Section II and in the technical report listed as
item 12 in Appendix B. The dynamical theory summarized in this section is based on
studying the movement of a connected set of non-interpenetrating particles. In this
theory, the constitutive equations are required only for the partial stresses and the dif-
fusive resistance. Porosity is a quantity directly related to the deformation of the set
and need not be treated as an additional variable. The relative movement between the
pore-water and the reference set of soil particles would apparently be the principal
kinematical variable related to the interaction force. For linear theory this relationship
would reduce to d'Arcy’s rule. The stresses in the reference set of particles must be

described in convected coordinates just as the deformation and defromation rates are.
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For the case of rate-independent materials, a theory for a single elastic-plastic material
was presented by Ayoub [8} He used the Cauchy stress as the mechanical variable.
He showed that, for large deformations, the difference between the conventional
description of stress/strain relaions using quantities referred to the original configuration
and the correct description proposed by him would be quite significant. The procedures
and descriptions suggested by Ayoub can be easily generalized to admit possible
coupling between the partial soil stresses and the fluid pressures. There is apparent
need for the development of data on the behavior of saturated soils under large defor-
mations to define the nature of the cobstitutive relations. Morland's [103] proposal that
the constitutive equations for effective stresses in the porous material be assumed to
have the same form as that for the intrinsic material appears to be attractive but
needs verification. The distinction between the partial stress and the effective stress
would allow for the possible coupling between the constitutive equations for the soil

and the pore-water.

‘!-







Section IV

SOLUTION PROCEDURES

4.1 INTRODUCTION
The solution procedures for the initial value problem of dynamic response of soil

masses can be classed into the following groups.

1. Exact Solutions
2. Semi-Discrete Solution Procedures
3. Finite Element Solutions

Exact solutions were developed for the linearized version neglecting mass and con-
stitutive couplings and assuming that the water was completely free to move relative
to the soil ' This essentially implied a specialization to Biot's theory. The exact solu-
tions described in items 1.14, 1.15, 2.7, 2.8, 35 in Appendix B and the semi-discrete
methods described in items 1.8 and 4.2 of the same Appendix were based on this theo-
ry. For the purpose of numerical solution (items 15, 1.6, 1.10, 1.12, 113, 1.17, 23, 24,
3.3, 34, 41 in Appendix B), nonlinearity and couplings could be accomodated to a cer-
tain extent. In this section we describe briefly the results of the rescarch under each

of the three headings.
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42 EXACT SOLUTIONS

4.2.1 Introduction

Exact solutions to Biots equations of dynamics of fluid-saturated porous media
were obtained by Biot [17-19} Later Deresiewicz (40l Chakraborty (33 and Garg [50]
obtained solutions for various boundary conditions. In the present research the work
was extended and computer codes for numerical solution were tested against these exact
solutions. Items 1.14, 1.17, 2.7, 2.8, and 35 in Appendix B contain details of this

development. The specific items of research included the following:

a). Garg's fundamental solution for the problem of one-dimensional wave propaga-
tion in fluid-saturated media was integrated to develop solutions for several cases of
surface loading of a saturated soil column of infinite extent. [Items 1.14 and 2.7,

Appendix Bl

b). In order to obtain a solution to the problems of "strong coupling” “weak
coupling” Garg had made certain assumptions. These assumptions were carefully inves-

tigated. [Item 3.5, Appendix B]

¢). Solutions tw Biot's equations of wave propagation involving sudden changes in
excitation were developed by separating the propagation of the singularity from the
diffusive process. These solutions were extended to some two-dimensional cases. [Item

1.15 and 2.8, Appendix B}

In the following paragraphs we summarize some of the results of these investiga-

tions.
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4.2.2 Garg's Solution
Figure 6(b) shows the load for which Garg obtained an exact solution and the
four load cases for which additional solutions were obtained as part of the present
research. Garg [13] wrote Biots equations, for the one-dimensional problem, without
inertial mass coupling in the form;
pVi = au, +cU, - D@u~U) (4.1)

as

P20 = cu, +bU  + D@u~U) (4.2)

where u, U are the displacements of the solid and fluid respectively. Garg [50]

assumed the displacements of the constituents to be specified on the end x=0 as

u,) = f(v)
(4.3)

U(,t) = gv)

Only the conditions at x =0 were needed as the column was assumed to be of infinite
extent. The initial conditions were;
u(x,0 =u,@)
U(x,0) = U,(x) (4.4)
a(x,,0 = u,@
U(x,0) = ﬁo(x)

In order to solve the wave equations, (4.1) and (4.2) were differentiated with
respect to the time variable. For bomogeneous u.utml conditions, the boundary conditions
on the velocities of the constituents, assuming they move together at this point, were

u(0,t) = U0, = ¢(v) (45)
Applying the Laplace transform to the time derivatives of (4.1) and (4.2), and denoting

the velocities of the solid and the fluid by v, V,

2= 2
PVt = a &Y 4 8V 4 pp(v-¥) (4.6)
ax ox

N




d(t)=sin wt

A .t

N

(a)

Q(t)= H(t) ~ H(t-tl)

t
Y
(b)
' t
¢ft)=~zI[H(t) - H(t-tl)] + H(t~tl)
— t
t
1 (e)
.t Hltat )T to - e
P(t)= ~EI[H(t) H(t tl)J + ) 2)[H(t 2t1) H(t tl)]
1
Y Y
(d)

Figure 6: Velocity Excitations Applied at the Boundary
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(2) 2 2y ' = ‘
pp’V = c-o—z- +b-e—2 - Dp(V-¥) 4.7
ox ox
where
LluG,n,0G,0)] = [Va,p,V(x,p)] | (4.8)

indicates Laplace transformation, and p is the transform parameter. Assuming the solu-

tion to have the form

' .
[V’ = tg] exp(—yx) (4.9)

the characteristic equation is

vp(Czyz—pz)—(Ciyz-pz)(ciyz—pz) =0 (4.10)
where:

C(z) = a+t:)+2c

2¢2 =cl+C 2 [(CI-C2) +4ci,C3 )

! = asp®

C? = b/p? (4.11)

c, = c/p"

c, = e/ p?

v = p(gpu)

C, is the wave velocity when the saturated medium acts as a single material and C,
are the wave velocities when no viscous coupling exists. (4.10) has four roots, viz,

vi, = M, (P = [MI(p) — M,(p]"? (4.12)
where

M, (p) = (1/C + 1/CH)p* + vpCiNCiCE)

_ @
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3
Mz(P) = P (E+V)
cic?
Thus, the general solution can be written as

v(x,p) = A, exp(—y,x) + A, exp(—y,x)
(4.13)
V(x,p) = B, exp(~y,x) + B, exp(—y,x)

Here A,, A, B, and B, are functions of p and must be determined by the following

boundary conditions and compatibility equations.

A +A, =30 o,
B, +B, = 3(p
[p® - Cy} + Dp/pV]A, = [C},y2 + Dp/pV]B, (4.14)
o
[p? - ny: + Dp/p(l)]A2 = [szyi + Dp/pm]Bz
Hence,
A, = @ (1-8)/(s, -S) o
A, = ¢ (§,-1)/(5,-8,)
(4.15)
B, = S§,4 °
1
B, = §,A,
where
(.2 2.2 2 2 o,
§, = (p"=Cly; +Q)/(C,vy, +Q)
S, = (pz—Cf'y: + Q)/(szyi +Q)
Q= IF .
p
A general solution based on inverse transformation of (4.13) is not available. Two spe-
cial cases were solved by Garg [S0] For relatively small value of D, Garg approximated
L J
o,
i mesndiiie A et 4‘




I

83

the solutions of the characteristic equation (4.10) to the first order in D to get:
y = Elz' (p? +2m,p) = L [(p+n,) - 7] (4.16)

+ C+
. ": = ?:1.2.. (p2+2‘n2p) = —C-zl-— [ (p+7‘,2)2 - 'n:] ’ (417)
where

n, = 3 (€ - CQ)/(C - €) | (4.18)
n, = 5 (Cg—cly(c-cl) (4.19)

As D approaches zero, 7, T, vanish, and the expressions for amplitudes in (4.15)

reduce to;
A = AFp
A, = A3 ' (420)
B, = B, 3(p)

B, = B,3(p)
where

A, =(C-C+cl/ct-c?)

m
L}

2 2 2 2
(ci-ci+ciH/ci~ch)

A,=1~-A

2 1 ! B=1-Bl

2
Garg termed this special case "weak” coupling. In evaluating A;, B, he set D=0, ie,
no coupling to get y,=p/C, and y,=p/C_. This assumption to avoid dependence of
the amplitudes on the transform parameter p made inversion of the solution possible,
but is incomsistent with the approximation to get equations (4.15) and (4.16). Substitut-

ing these results into (4.13), the transformed solution for weak coupling was written

as;

P
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[3((‘;))] = [:{‘]E(p) exp[—(@/C)F,] + ';:: $(p) exp[—(/CF,] (421)
where

F, = [(p+n,)* —ai1"

F, = [(p+1,)* — ;]
Inversion of (4.21) gave

l;(;":)) = r;.l‘ [exp(-'nlt)'S(t——Cx:-) + 72; exp(-7,t) fl(t)H(t—é-)]’*ﬁ(t)

: 7, ]
+ l; : [exp(-7,t) 8t — Ci_-) + CLexp(- n,v) £,(t) HG— Ci-)]*qb(t) (4.22)

-

where

1,[n, (Y —-2*C?)"?

£() =
' (¢ -x/Ct)?

Il ['nz( t2 - xz/ci)x/z ]

(e*—x%/C2)"?

f£,(0) =

Here, H(t) is the Heaviside step function, 8(t) is the Dirac delta and I, is the modified
Bessel function of first kind of order ome. The symbol * denotes convolution product.
In evaluating the amplitudes no viscous coupling was assumed while effect of viscous
coupling approximated to the first order was retained in the expongntially decaying
terms. If, for consistency, we set D=0 'in the exponential decay terms, the trans-

formed solution (4.21) would reduce to:

V(p) _ A.l _ Az _
’V(p) = IB‘l é(p) exp| (!p/c+)] + B.z $(p) exp[—(xp/C))] (4.23)
The inverse is:
a0 _ A ., ) A
U (x, t)l - IB"I 8(t-x/Co*¢ (V) + B.z §(t—=x/C)*¢p(v) (4.24)




85
This is the solution for no viscous coupling in which the solid and the fluid particles

move independently.

As D goes to infinity, the characteristic equation (4.10) yields a single root:

= B
y T, (4.29)

which corresponds to wave propagation with speed C; ie., the mixture moves as a sin-

gle material. For moderately large value of D, ie, "strong” coupling, Garg [50] wrote

the first order approximation of the characteristic root in 1/D as:

= P 1
y C°[1+9p] (4.26)
where
1 2,2 2
6 = —=[Cl/Co-1llCl/ C5~1] (427)

The expression for 6 given in [SO] is in error. (4.27) is the corrected form given by
Garg [51]1 (4.26) describes the motion of the mixture in which Vv and V are different
in order 1/D. Hence, Garg [S0] assumed:

v=1V (4.28)
Based on this approximation, the transformed solution was obtained, using equations

(4.26) and (4.28) ax

= _ x
vip) = 3(;3)[(:0(“_9p ] | | (4.29)

or, equivalently:

=(a) = _x x
vip) = &(p) expl Coolexplcoez(p+l/0)] (4.30)

The inverse is:

3 = - X *
u(x,t) = expl C°9]¢(t)

1 I \l/2 2, Xt 4172 t
{'0-(-6‘)—;) llla(c—o) ]+8(t)}e!p[‘a] (4.31)

i,

2.

A.‘
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4.2.3 Integration of Garg’s Solution

| Garg's solution (4.24), for "weak coupling”, was integrated to obtain explicit solu-
i tions for four different velocity boundary conditions shown in Figure 6. These solu-

3 tions are listed below. Details are given in item 1.14. of Appendix B.

a). Unit Box Function

The applied velocity boundary condition at x=0 is

¢() = HW —H@-1t) (4.32)
h where t, is the time at which the excitation is reduced to zero. Substitution into
(4.21) gives
al _ (A X, MmX
b= MNexp[——=—]+ % Jexp[—n 7]1f.(r)dr}
U [Bn C. C. (N o
_ X y_ —, _ X
x H(t _C+) H(t-rt, —C+)
A’ n,X nx
2 -2 ]- 2 -
+ B.2 {exp( C_] c Jc\exp[ n,7]1f(r)dr }
X X
x H(t—-é—) - H(t—tl—c—_) (4.33)

b). Sine Function

Assuming that the velocity specified on the boundary is harmonic; ie.
$(t) = sin(wt) (4.34)

where w is the frequency, the corresponding solution is given by

n,
+
C, )

Y _
= [B.I](smw(t a)exp[

u
U

X 13
s [sin wt £,(1) cos wt dr
c, L

—omwt.f £,(r) sinwt dr] } H(t—2/C,)
C

-

2
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A, Y
* 1y (sinale— &) exp[—%z—-x-]+ %[sinwt"l: £,() cos . dr
t
—coswtj £,(r) sinwt dr]} H(t—w/C_) (4.35)
C_
c). Ramp Function
F .
Velocity function specified as acting on the boundary is
| $® = L [HE® - HG—t)] + He—t) (4.36)
1
The solution for this case is:
i
| u _ A.l l,.,_x _Mx
t
+ hWZ fl(‘r)g:—f—)- exp[—n,7]d7] HGe~x/C,)
% C. c t .
1 x X
+[=Ct, —t+ =) exp[— 21
t, ! C, C,
3 _t—1) _ e
F + c. ll;t‘l(-r)(l —tl——exp[ n,7]dr]HG-t, —2/C)}
L im 2y expro ™2
+‘:; {[tl(t C_)exp[ 3 )|
I
L
+ M-f fz(f)m exp[—7,7]d7] Ht—x/C_)
C_ 3 t,
1o —te X ~ D2
r. +[t|(t‘ t+c_)exp[ c
+ 22 [ @ a- aplon, rlar) K=, —vC) ) (037
- wC_ 1
4
r
¢
|
|
.
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d).  Spike Function

The excitation in this case may be expressed as

¢ = = [H® - HE—t)]+ (= -2) [HE-2t,) - HG-t)] (4.38)
1 1

The solution for velocity is:

-1

1, _ x _MI,, ME (t—7)
{[E(t c—+)exp[ C+]+ c. ;/C‘fl(‘r) : exp[—n, 7] d7]

x [H(t-x/C) - H(t-t,—x/C)] + [tl(t-ci-h,) exp[ - ‘z:'x

1 + +

]

+ Tg: Jclfl(‘r) (tt-lf) —2) exp[—n, 7] dr]

x[HG@-2t,-x/C) —H(t-t, -vC)]}

t

2 o1 _x X, MX (t—1)
+[:;-2 {[t—l-(t c—-)exp[' C_]+ a ../c.fz(f) 5 exp[—m, 7] dr]

x [H(t-v/C) — H(t~t, ~v/C)] + [tl(t—CL-zzl)exp[—l'éi
1 -

+% f,(n) (tt_lf) —2) exp[—m,7]d7]
- Yo
x[H(t=2t, —x/C) - H(t—t, —w/C)}} (4.39)

424 Evaluation of Garg's Approximations

To obtain exact inverses to the "weak” and the "strong” coupling problems, Garg
[50] made some assumptions Primarily these amounted tto neglecting the Laplace trans-
form perameter p in comparison with D or its reciprocal depending upon whether D
took on very large (strong coupling) or very small (weak coupling) values. The reason-

ableness of these assumptions was examined. As the range of values of the trans-

A
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formed parameter p extends over the entire positive interval, it would appear improper
to compare the parameter D, or its inverse, with p in terms of order of magnitude.
However, if C,=C,=C_ the solution given by (4.31) for strong coupling is correct.
But, for that case, =0 and the solution reduces to the one for the case D — oo. This
special case requires that the quantity

(CI-C3)Y +4Cp2'C),
should vanish, ie. C,=C, and C,=C, =0. This in turn requires a/p® = b/p? and
¢=0, ie. the only coupling in (4.6) and (4.7) is through the viscous coupling. Vanish-
ing of ¢ implies that the constitutive relations for the fluid and solid partial stresses

are uncoupled.

For the case of weak coupling too, Garg used a linear approximation in D for
roots of the characteristic equation; but for determination of the amplitudes, D was set

equal to zero. If the same linearization is used for the amplitudes as well, the solution

would be
A = ~$(p)1'/F. A, = a(p)Jz/p
(4.40)
B, = &p)L,/F, B, = &p)L/F
where
C2+C2
1, = (C, +Dp)) ~ (p+1)Q, - l_d'io/p;"
cl+c?
1, = (CIx,+D/p)) = (p+¥)Q, - __lc’ 12 py/pl!?
C2+C2
L, = p+(p+»Q, + (l—-—'&—:-'—’-)D/p:’” - Ch, - (Cl+CI,
C +C; 1) 2 2 2
L, =p+(p+viQ, + “"—'—CT'—Z)D/po -Ch, = (C+CI

>




F = [Clp+(CI+C)D/pIR, + CI R, (4.41)

R, = (C:-CH/CicH
R, = [CXC2+CH-2C3C21/ICiCE(C2~CD)]

_ 2
A2 = ap,/p

o = SuGitC)
1 Cf.ci

Ci(C, +C})
c.ct

The amplitudes are dependent on p in a complicated fashion and an analytical inverse

Q =

is not available. Of course, for » = O the expressions are identical to those in [S0} To
examine the applicability of Garg's solution, the amplitudes for two materials, ie. the
one used in [50] and a coarse sand with mechanical properties listed in Table 1 were
evaluated. In the table, K, K,, K, are, respectively, the bulk moduli of the porous sol-
id, the nonporous solid and the fluid. u’ is the shear modulus of the nonporous solid.
(4.40) gave for Garg's material

J, = —~(02238p + 101.45)

J, = —(00044 p + 1455)

L, = ~(0.1054p + 6501)

L, = (0.1139p + 3498)

F = (0.8906p + $757.4)
and for coarse sand

], = ~(54966p + 148004.4)

5, = ~(0283p + 7529)

L, = ~(1.4065p + 7386.2)

R,

.9
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L, = (53276 p + 1398656)

P = (1897p + 57574)
The above expressions show that the comtribution of the terms containing p 15 neglig-
ble in comparison with the comstant terms unless p takes on extremely large values
We nots further that for both the materials, the contribution J, of the second wave in
the solid to the total responss is relatively small For the coaree mnd the contnbution

L, of the first wave in the fluxd s also relstively small

Gergs approximats solution was bardly distinguishable from the numencal inverse
of the exact tranaformed solution. It seems appropniate o conclude that Garg's approus-
mats solution for weak coupling is acceptable for a short time range after sudden
application of uniform velocity at the end of the column For the case of strong

coupling, it appears ressonable to set

y= Cl(l-—S) ’ (4.42)
)

for sufficiently large values of D. (4.42) can be rewritten as

Cly'-p' = p8’-28) (4.43)
and results in
Cly’-p' = p'((—ci—x) + E(a’—wl (4.44)
o o
°
Cly’-p’ = p‘((f‘i-x) + E(a’-wl (4.45) 1
C Co
Substituting these relations into (4.10),
¢ c ¢ c ¢ *
2P’ = PUS -GS - =28 S (-0 + S (S-D]+ K8 (446)
C; C; C; % o Co
°
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where O(8”) represents terms of second order in 8. Thus, a first order approximation ©

S ix
CJ
-~ P (- .
3 25(Cf, 1) (4.47)
where
B=»y-pa (4.48)
and
c c!
As —(==-1)+ =(—=-1)
Co G C Co

For the above result to mawh Gargs (S0l it s pecessary 0 amume S =v, Le, W Deg-

lect the terms which cootin p.  (4.48) gave

B = 1316x10° + 0.879785p

and for a fine mnd

B = 28541x10° + 1.184847p
Gargs lineanzation of 8 and the further spprozimation to obtain an analytical solution
were spen 0 Yield results of acceptable sccuracy and form a proper bamis for develop-

menta of solutions for other boundary conditions

425 Wave Propagation in a Fluid-Saturated Soil Layer

During the present research, the concepts described above were extended w 3
finite soil column (elastic soil layer) and to independently specified boundary conditions
for the two constituents. The solution procems consisted of constructing singular fields
which incorporate all discontinuities of the velocity fields and their first and second
derivatives. This additive decomposition left twice continuosly differentiable fields
which satisfy coupled hyperbolic second order differential equations with continuous

forcing terms. The results of the apalysis were compared with numerical inversion of




|

o4
the Laplace transform solutions and also with numerical solutions obtained by using
the finite element method. Details of this research are documented in items 1.15 and

2.8 in Appendiz B

43 SEMI-DISCRETE SOLUTION

In order w separate the ervor cootribution of the spatial and the temporal spprox-
imations, an ecigenfunction approsch to solution of spatially discretized equations of
moton Was developed. This was expected to provide a benchmark for evaluation of
fully discretized time domain solution procedures. The studies showed the presence of a
high frequency spurious oscillatory compooent related to the spatia]l mesh size. With
refinement of the mesh, the lowest eigenvalues of the Laplace transform solution were
found to cooverge. A Ritz vector type approsch in which the base vectors are related

w the exauation could pomibly umprove the accuracy of the solution.

The procedure employed conmsted of a finite element discretization of the coupled

equations of motion to get the matrix equations

w MU 0 [[a K
. L +| " L' + ., u - l:j (4.49)
o M" C" of K"

Here u, w are the soil displacement and the displacement of the fluid relative to the

soil respectively. C_ represents solid dampng. M, K and C are, respectively, the mam,
stiffoess and damping with the subscripts m, ff and &f indicating the respective solid,
fluid and coupling components. The solid damping was introduced by Ghaboussi [S3]
as a linear combination of the stiffness and mass matrices, (Rayleigh damping), in the
following form;

C,=a,M_—f'M,)+2,K_—a’K,) (4.50)

where a,, a, are constants. (4.49) can be expressed compectly asx

9

Y.
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IMHT} + [C){U} + [K){U} = {R} (4.51)

w =

and (Ml [Cl (K] are, respectively, the system mam, damping and stiffness matrices

where

Dropping the square brackets for convenience, these equations after Laplace transforma-
tion become:
(M +sC +K)q = F (452)

where

q=C=CG)

_ (453)
F=F()=R+sMU + MU +CL

and U,. U, are the initial condibops for nodal point displacement and velocities.
(452) is a symem of quadratic equationsa To linearize the system, iet

Q= (454)
Premultuplying by M, and rearmanging,

Mq-sMq =0 (455)
Hence (4.52) can be wntten as

-(K +sC)q-sMq = -F | (4.56)

Tr: EITEIQ

(A-sBlg = -T (4.58)

o) ¢

where:




[ ]

ST
SR

(458) is a system of linear equations A and B are symmetric matrices The pre-

scribed boundary conditions on displacements, velocities etc. were enforced following
Wilson's method. To obtain a solution t these equatons, the vector  was expressed
as a linear combination of a set of independent vectors Q, n=12..m, in the follow-

ing form;
q=34,Q, = [Qlal (4.59)
[ 4]

where a, are coefficients and Q, is the o column of the matrix (Q) The eigenvec-

tors of the problem

(A-sBly =0 o=12 . m (4.60)
were taken to be the independent vectora The cigenvalues s, were determined as the
roots of the polynomial equation

A —sBl = 0 (4.61)
(4.58) and (4.59) give

(A-sB)Qa = -1 _ (462)
Premultiplying both sides by Q'

A'a - sBa = QT (4.63)
where A’'=Q'AQ and B’ =Q'BQ are diagonal matrices due to orthogonality of Q with
respect to A and B The n” equation is

Ala —sBa = QI (4.64)

where
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A, = QIAQ, =s,Q!BQ, =5 B, (465)

Substitution of (4.65) into (4.64) gave

I.B:I. - IB:.. = —Q:l' (4.66)
Hence
T
I‘ = —-'L.L_- (‘57)
(s,—0)B,

Subsutution of (467) in (459) gave the solution in the Lapiace transform spece:

T

ve g O

) Y '.)B, Q. (4.68)
This series was inverted, term by term, to get the required results in the form of
nodal displacements and velocities as functions of time. These functions were evalust-
od for specified values of the time variable w determine the solutions as well as sec-

ondary quantities of interest eg. the stress in the material

Items 1.8 and 42 in Appendix B conwmin details of the procedures as well as

examples for validation of the computer codes

44 FINITE ELEMENT SOLUTIONS

4A4.1 Variational Formulation

Vanational formulations of the linesrized version of the theory and its extension
to include material nonlinearity were developed to construct a basis for alternate finite
element approsches to the problem. Ghaboussi (S3] had developed a variational formula-
tion of Biot's theory but for the purpose of finite element analysis he used the Galer-
kin procedure. Also, this variational formulation did not allow for the boundary con-

ditions properly nor did it allow for intereiement discontinuities inherent in finite

9.
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element methods.

In order to systematically develop variational principles, the equations of motion

were written in a form that they would constitute a self-adjoint system in an appro-

priate linear vector space. This procedure was based on previous work by Gurtin

[71,72] Mikblin [98]) and Sandhu and his co-workers [135-138] The self-adjoint system

of equations for the problem ix
Alw) = f on Rx[0,00)
Here A is a mauix of operators. Explicitly

p(l) 0 -L
D D0 101/k) -t‘gg 0

u v o o
A am
0 o o0
0 0 ¢
0
where
1
L= -:-(a,_sﬂk- + 8--3’?
and
p=t(E, +aM83)
Also in (4.69)
u_ F-
W- G
u = ¥ and f = 0
Tl, 0
., 0
I3 0

o

o

0 -
0
p taM$

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)
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Elements of the operator matrix A satisfy self-adjpintness with respect to the bilinear

d.p = [(‘gdl (4.74)

2‘“5"‘)“5’: = a, ZAu“fl + D'(u‘.u) , im1,2,..... n (4.75)

where Dy(u,,u) denotes quantities associated with the boundary dR of the region of
interest R. Counsistent boundary conditions for (4.69) are
*up = -t*wn, o S, x[0,0)
‘t*wp, = twn om §,x[0,)
twn, = t*vn, oo $§,x[0.) (4.76)
vra = T, ca S, x[0,o)
Consistent form of the internal jump discontinuities is
-t‘(uin,)' = -t‘(gl)‘nj oa S, x{0,00)
t(wn) = g, on S, x[0,00)
*(wn) = t*gn oo S, x[0,e) (4.77)
v(rn) = t*gn oo S, x[0,)
Boundary operators C;, i.j = 1,2,....n are said to be consistent with the matrix of

field operators if in (4.75)

n n
Dy(u,,u) = ‘“s'zci,“,’a - ij.C’u,ga (4.78)
rl ri
Here, surfaces S,, S,, S, and S, are embedded in the interior of R Operators in the
self-adpint operator matrix in (4.70) bave the following relationships

q‘u‘..,'fu)l = —d‘ul’fij.fl
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+«.“ln)"u’3, + “‘“i"u”;’s‘
+<1‘(uln!)‘,fu>s" + «'ul.(r”n’)Bs“ (4.79)

«‘W‘.'|>. = —«‘wm.ﬂ.

+atwa, g+ atw, wnpy

tt(wa), ;g + atw,,(wn)> (4.80)

Sy
Here we asume that <, », is the sum of quantities evaluated over the subregions of
R such that all the surfaces S,, S,, S,. S, are contained in the union of the bound-
aries of these subregions. For the coupled system (4.69) the governing function is
defined ax

(2)

(2) 1
Q) = <y, u>, + 2“’zwu'“n’n =Tt <(‘&f— e f)wﬂw.’l

—tw W, + w1y~ 2a%,m>, + <<y, Ty

—2at, 10, + «‘(£w+a‘M8u8u)eu. >
+ 2<t‘aM8ueU,€>. + «‘Mf,f>. - 2« ,Fp, — 2w,,Gp>,
"7.,-"(“."2“.) Bpg ~ <, t(w,—2w) B>s,
+<w 17 ~2m) Bpg, + U, t'(ﬂ,n, -2T) >,
—du.t‘((uin,)'—Z(g,)‘n,bs“ - <1r.t'((w,ni)—2g2)>sz‘
+<w ,t(m7n) - 2g,n) >, * Y (rn) ~2g,n) ., (4.81)
The Gateaux differential of this function along v=1{u, W, ¥, 7, ¢, ¥} is
_ = 2_, _ -
A, 0W) = q,pu+p W, 1~ 2F>,
+ <ui.p\_x'+mei—t‘?iM>ll

(2)
+ <W, 0%, + (B + 100w, — tmaibi ~ 26, >,
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.|>l

(2)
+ <w,.p G + (B +1'%)3v"—t‘;
+<w,ttw, —t>, + W o>,

+<T .t v >, + <70 —t% >,

+ <87, + T, +a'MB 8 D, +aMB >,
+ <o, -tT, +E,, +a’M8 8 )¢, +aME E>,
+<f.-t'w+ +t*aMB e +UME>,

+<§, T+ +raMd e +UME>,

- <?u.t‘(|.|‘nj~2ﬁin,)>sl ~ <'u"‘6c°1>s,

- <¥.twpn =2wp)>, - <w.tWp >

- <G‘.t'(w-n‘-—2&1n‘)>33 - <w,, >

- <Kh.t'(1un)-2‘f.)>s‘ - <u,trp>

- <?,,.t‘((uin))'—2(g‘)‘n)>sll - <fu.t'(i‘nj)'>s“

- <F.t‘((win,)'-2gz)>su - <"'ﬁinl)‘>$a

- <%, my -~ .33??).>53| - <w,,w(m) >’3:

AP

=<y, @) —2Agn)>; — <u rp)>c (4.82)
Using (4.79) and (4.80) the Gateaux differential is seen to vanish if and only if all
the field equations along with the boundary conditions and the jump discontinuities are
satisfied. (4.79) and (4.80) relate pairs of operators in the operator matrix A and may
be used to eliminate either of the elements in each pair from the function Q(u) in
(4.81). Eight alternate forms can be obtained by using either or both relations. Elimina-
tion of an operator A, from the function implies that state variable u, need not be in

the domain M, of A,, This results in relaxating the requirement of smoothness of u,
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thereby extending the space of admimible states. In the context of the finite element
method, it is clear that the extension of the admissible space provides greater freedom

in selection of approximation functioms.

If the admissible state is constrained to satisfy some field equation and/or bound-
ary conditions, certain specialized forms of the variational principle are realized. This
procedure is used to reduce the number of free variables in the governing function.
Also, cerain asumptions in the spatial or temporal variation of some of the variables
lead to approximate theorics. In the context of direct methods of approximation the

constarints assumed in the specialization must be satisfied by admissible states.

As an example, for the extended functional obtained by using (4.79) and (4.80) w©
eliminate 7, , and mw, from (4.81), specialization tw stisfy (4.69), and (4.69), ie, satis-
fying identically the kinematic relationships gives

(2)

8, = <py,,u>, +2<p 7w, u>, + <(Pf—+1'-:-)w,.w,>.

?

+ <tE, +a'MB 5, Je, 0>, + 2<t*aMBe 6>,

+ <t'M§,€>, - 2<y,,F>, - 2<w,G>,

—-2<7

U't.(“i-“‘)nPs, - 2<1r.t'(wi—-wl)n‘>sz

—2<w,, v >~ 2<u, T >

=2<r,,t(un) _(3|)|n1)>s" —2<7,*(wn) - g2)>52‘

—2<w, gy, >g — 2<y;,tgn,> (4.83)

S
If the field variables over the domain are continuous, the jump discontinuity terms
drop out giving the specialization;

(2)

(2)
0, = <pu,u>, +2<p w, u>, + <(£’f—+1'%)wi.wi>l

2
+ <ME,, +a'MBB Je, e >, + 2<t*aMbe  £>,

&
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+ <'M§.E>, —2<y, .F>, —2<w .G >,
~2<r,, ™, ~0)n > = 2<w (W, ~ W >y
..2(‘!‘,!‘;1\‘)" - 2<u‘,!"r'>“ (4.84)

Further specialization of (4.34) to the case where displacement boundary conditions are
identically satisfied yields the function governing the two field formulation proposed
by Ghaboussi (53] except that in the present formulation the boundary terms are con-

sistent.

Figure 7 diagramatically depicts the possible extensions of the general variational
principle based on the direct formulation. Figure 8 shows the same for the comple-
mentary formulation. In either case, only the specializations listed in the report (item
1.7 in Appendix B) are shown. Evidently, other extended forms could be used as start-

ing points for specialization.

Details of this effort are contained in items 1.7 and 3.2 in Appendix B. For non-
linear problems, a quasilinearized form of the nonlinear equations was used t develop

a variational formulation (item 1.13 in Appendix B).

442 Two- and Three-Field Formulations

In the two-field formulations of Biots theory the soil displacement and the dis-
placement of fluid relative to the soil were used as the two field variables. The pore
pressures were determined through a constitutive relationship using volumetric strain of
the s0il and the change in fluid content. During the course of the present research, it
was felt that this approach may not yield sufficiently accurate estimates of the pore
pressures because of the need for numerical evaluation of the derivatives. A three-field
formulation introducing the pore-pressure as the third field variable was derived as a

specialization from the general variational principle. Assuming the boundary conditions

R J
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on S, and S, are identically satisfied, the governing function for this was:

0 = <pu,u>, +2<p 0w, 0>, + <GEH DWW >,

-2<t‘7’.s'wi>n + <t"!.=.ijuem,eij>ll + 2<"°‘8u°u'">n

m
- <t‘ﬁ'">n - 2<ui’Fi>R - 2<wi.Gi>a
+2<w,t*wn >, - 2<y,*T> (4.85)
2 4

This formulation was implemented in a finite element computer code to obtain continu-
ous pore pressure distributions. The three-field formulation also allowed direct specifica-
tion of the fluid pressures on the boundaries, which is not possible with the two-field
formulations, where this boundary condition could only be applied as a linear con-
straint in terms of soil displacement and relative fluid displacement. The studies
showed that though the numerical difference in the results from the two- and three-
field formulations was only slight, the three-field formulation was much more expen-
sive. However, it has the distinct advantage of being able to prescribe boundary values
for pore pressgsures. Items 1.10, 3.4 and 4.1 of Appendix B contain details of the for-

mulation and a study of its effectiveness.

4.4.3 Spatial Discretization

Most succesful schemes for approximate solution of the coupled problem of quasi-
static soil deformation and fluid flow bhave been based on the use of higher order
interpolation for the displacements and a lower order for the pore water pressures.
These elements are expensive to use in terms of computer time. Elements based on the
use of the same order of interpolation had been found to give unreliable results just
after loading and would be suspect for use in dynamic problems. Incompatible interele-

ment boundaries have been used to combine the economy of lower order elements and
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yet retain higher order local interpolation. These elements satisfy the patch test for
completeness for certain element geometries. Ghaboussi's four point incompatible element
[52,53) was implemented in a computer program for consolidation analysis to compare
its performance with that of higher order elements for efficien;:y and accuracy. Details
of this study are contained in item 1.3 of appendix B. These studies were useful in
the selection of the strategy appropriate to the problem of dynamic analysis of liquid-
filled soils. The comparative study showed that the incompatible element gave results
almost identical to those obtained using the higher order elements based on biquadratic
interpolation for displacements, but was significantly more economical. This made Gha-
boussi's element a good candidate for extension to nonlinear, three-dimensional and

dynamic problems.

Three different finite element strategies were used to cover the cases of one- and
two-dimensional wave propagation. Both bilinear and biquadratic interpolation schemes
were implemented along with Ghaboussi's incompatible element and cubic Hermite poly-
nomials for one-dimensional wave propagation. These interpolation schemes were imple-
mented in a dynamic analysis computer program and used to solve one-dimensional
wave propagation problems for which exact solutions were available, The code was
used to solve one-dimensional wave propagation in a single material. Both the steady
state and the transient cases were considered. Garg's [50] theoretical solutions for the
case of weak as well as strong couplings were used as benchmarks. Application of
the computer code to all these problems showed excellent agreement between the
numerical and the theoretical solutions. The code could not be tested for two-
dimensional wave propagation because of lack of exact solutions for that case. Reports

listed as items 1.3, 1.15 and 2.3 of Appendix B describe some of this work.

‘!k
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444 Singularity Elements

Conventional finite element procedures cannot adequately model pore pressures
' near loaded free-draining boundaries because of the singularity in the pore pressure that
exists immediately after the load is applied. Special finite elements, developed by Lee
(89] to allow for line singularities were used to simulate propagation of waves in sat-
. urated soil. These elements use interpolating functions of the type

1—ax—-(Q1-2)x" |

where the index n is sufficiently large and coefficient a is chosen to be
I | a = 1 — exp(—mt) . )
and were found to be satisfactory for proper representation of singularity at the wave
front. These elements have the property that for t=0, a =0 and, therefore, the interpo-
lating function is 1—x" and as t increases the function approaches 1—1x. This element
reproduces the line singularity occuring in one-dimensional consolidation problem imme-
diately after loading and the singularity at a wave front. The interpolating scheme

would approach 1—x as time t increases. This research is described in items 1.1 and -

3.1 in Appendix B.
445 Time Domain Integration ®
The resuits for one-dimensional analysis, for which exact solutions are available, !
showed that the conventional time-domain integration procedures found to be quite
effective for single material problems, were also mble for the ooﬁpled problen'n of ®
dynamics of saturated soils. A popular scheme is Wilson's B, y, 0 single step method. 1
For two-dimensional cases, no exact solutions are available. For this reason, all the code
verification had t be done on one-dimensional wave propagation problems. The °
requirements for an acceptable time step integration scheme were that the results ‘
should be insensitive to the choice of time-domain integration selected by the user and
that with reduction of the size of the time step the approximate solution should con- °
1
\J
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verge.

A modification to Wilson's method was introduced in order to specify velocity
boundary conditions. Finite element discretization of the spatial domain leads to:

MU + CU + KU = R (4.86)

where M, K and C are the mass, stiffness and damping matrices, respectively, and R is

the load vector at time t, In (4.86), the square brackets and curly braces have been
dropped for convenience, as in (4.52). In Wilson's scheme the displacements and veloci-
ties at time (t+0At) are expressed in terms of U, U and U at time t_ as

U, = U, + 040, + 172~ B)(0A0T, + BOADU_, (4.87)

Un+d = U_+ (1 -y)(0400 (4.88)
in which B and y are Newmark's coefficients. Substituting (4.87) and (4.88) into
(4.86) yields

KU _, = R, (4.89)

where

. 1 1
K =K+—1_M+ o
B(oAr)? B(6aD)

= 1 1
R.,=R_,+ POTeD Ma_, + me i (4.90)

U, + (a0, + (172 - B)(8A1)*T

b, = U, + (1—p/y)(0a0°0

Assuming cubic variation of nodal point displacement over the time step (t,.t,,,) in
terms of displacement, velocity and acceleration at time t,, the values of these quanti-

ties at time (t, + At) are

_ 1 1
U _-GTUM+1 9—30n+

n+l

1 1 1 25
1- ?-lmun + 3(1 - F)(At) U,

K.J

K
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—X—-(U,,~U,) +

= - - j
prve 1 "U + (1 O)Att.ln (491)

U, = =g W)~ 10, + (1- 51 )i
o+l BOJSt e n BO At ( 2580 )Un

In a given problem, when velocities are prescribed at certain points, the corre-
sponding accelerations and displacements are also known. In developing the modified
scheme, all features of Wilson's method were sought to be retained. This enabled appli-
cation of the scheme directly without elimination of known degrees-of-freedom which
is quite cumbersome in dynamic problems. Let subscripts a, b denote the unknown and

specified quantities, respectively. Then for the stage (n +0) at time t, + 0At, (4.86) can
be rewritten in partitioned form as
My {8 Cob

(492)
LR
Rearrangement of terms in (4.92) gives

0] B oo ﬁ ql,

(o+6)

From (4.87)

0, fu_,~u —0Atu —(1/2—B)(0At) ' ] (4.94)
I.I.M B(gAt)Z U.M u u u
Substituting (4.94) in (4.88)

e = ey o= u, —0At(1 - B/y)u —(1/2 = B/y) (0] (495)

Rewriting (4.94) and (4.95) for the unknown quantities u, and u,

lg‘]mf s(oAt)zl(o [Ol (em{o
[:“ - [:‘] - (OAt)(l—B/y){:;‘

- (1/2-8) (9At)2L'| l (4.96)

(4.97)

lo‘ = B(0At)

()

- (1/72—-8/y) (GAt)Z’S'

K
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Substituting (4.96) and (4.97) into (4.93) gives

(4.98)
where
K, = Ka * -E(-éi-t_)?M“ + S Co (4.99)
K, = K, + EélA_t)?M“ + & Co (4.100)
K, = K, + -B_(.O—IA—t)-z_Mh + ROIAWC'* (410D
K;, = K, + Rélz:_)TM“" + Sy o | (4102)
[:J ﬁ(OAt)’ H‘) + l:; ],,,,: (OAt){Z‘}: (1/2-8) (OAI)ZE‘]J

i\ 2 i
+[C] 985 l{o‘] + [i’ + (0AD(1 —B/y)[:‘] + (172 - B/y)(0AY) {:'U
a oo n
—[M]‘?*J - (C]{?'J (4.103)
o8 o+

Wilson'’s method of allowing for prescribed displacement boundary condition was used

to rewrite (4.98) as

K ol R
a0 ] = {.* (4.104)
I {4y,
(n+9)
(n+6)
where
R, =R -K,u . (4.105)
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and U, are the prescribed values of u, I denotes the identity matrix. The first set of
equations in (4.104) is the first set of (4.98) modified for the kmown u, and the sec-
ond set of equations are trivial equations introduced to avoid rgordering of elements of

the displacement vector.

The procedure discussed above was used to solve the problem of wave propaga-
tion in a finite soil column of length (L =50cm.) shown in Figure 9. The excitation
was applied at the top (x=0). The base of the soil column was assumed to be rigid
and impervious. The material properties were chosen to be the same as used by Garg

[50L ie.

2 = 082, o? =018, oV =21812 g/em®, P = 018 g/em®

K,=0.36x10'% K=0118x10'%, K,=022x10", G=099x10'" (all in dynes/em?)

These are related to Biot's constants and yield

E = 02321 X 10'? dynes/cm?, » = 0.171, a = 06722, M = 0.1047 x 10"? dynes/cm?

Two example problems with different boundary conditions, Figure 10, one following
Garg [50] and the other suggested by Morland (item 1.15. in Appendix B) were solved
using the numerical inversion of the Laplace transform solution and the direct finite

element procedure. Mathematically, the boundary conditions are:

Example 1:
v0,9 = HQ)
(4.106)
v'0,t) = H®

where H(t) is the Heaviside function. Corresponding velocity transformations are

v%o0, p)

i

1/p
(4.107)

v20.p) 1/p

K._J

.9




X=
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X
Soil Column
No Lateral Displacement
’ x =50 cm
w

Rigid Impervious Base

Figure 9: Representative Soil Column
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Figure 10: Types of Excitation Applied on the Soil Column
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Example 2:
v0,t) = H®
(4.108)
v¥0,t) = 1-02¢YTIH®)

t=(L/C)) = 1409 usec was taken as a normalizing factor. In this example, the fluid
velocity specified at the boundary was different from the specified solid velocity and
increased gradually from a value of 0.8 at t=0 to unity over the time scale. The

velocity transformations are given by

Vo, p)

1/p
(4.109)

v20,p) = 1/p—02/p+1)

Two values of the drag parameter:

D =0219x10°  g/cm®—sec

D =0219x10°  g/em’—sec
representing the so-called low drag (free relative motion between constituents) and high

drag (negligible relative motion) were used. The corresponding values for the ratio

K/u used in the finite element analysis were 0.148 X 10? and 0.148 % 10*, respectively.

Numerical inversion of the Laplace transform solution to the problem was carried
out using 5000 terms in Dubners [41] formula 4 |
flt) = (1/7)e" i'Re{f(r+km/21)cos(km/21)] 0<t<r (4.110)
k=0
where prime signifies that only half of k=0 term is included in the sum. Dubmer
(41] showed that the error could be made small for 0St<7 by choosing r7 sufficient-
ly large, where r is a real number. The value of r7 was set equal to 5.017. The

velocity histories at four locations, namely 10 ¢cm and 30 cm from the free surface,

N.J
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were recorded over a total time period of 9864 usec at intervals of 14 usec. This

allowed for six reflections of the faster C, wave and two reflections of the slower C_

wave. The CPU time on the IBM 3081 mainframe was 70 min.

The finite element solution was a uniform spatial mesh for Example 1 but for
Example 2 modelled the boundary layer by a fine mesh of elements near the top sur-
face including a singularity element adjacent to the surface. Thus in Example 1 the
spatial discretization consisted of 100 linear elements and 986 time steps of size 1 usec
in the time domain. In Example 2, 100 elements Of 0.005 cm length were employed
near the top ’surface and 100 elements of 0.495 cm for the remainder of the column.

The temporal integration involved 141 steps of 0.01 usec and 985 steps of 1 usec.

The velocity histories for low drag and high drag for Example 1 are shown in
Figure 11 to Figure 14 and Figure 15 to Figure 18, respectively. For Example 2, Figure
19 to Figure 22 illustrate the low drag effects and Figure 23 to Figure 26 the high
drag. I[n both examples, excellent agreement of numeri;:al results is seen. In example
2, a refined mesh consisting only of linear elements was not able to reproduce the
sharp wave fronts and large oscillations were encountered. This was overcome by the

use of singularity element near the top boundary. The shape functions for this element

were of the type (1—-{*) and {* over (0,1). The index 8 was taken to be 100.
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44.6 Nonlinear Problems

For nonlinear problems, an incremental approach was necessary. The equations
governing this case along with a variational formulation of the problem were devel-
oped (item 1.13 of Appendix B). Only material nonlinearity was considered.

At any instant of time t, the equilibrium forces acting on the discretized system

can be represented by

("] le l.; 0 ﬁ 'Y Olfu s Kgf ] ]
[:u Mafl.‘.’ * '2 C,,I\'r * o[w * K., K.f”:"l B F, * l::' (4.111)
Alternatively, one might write :
F(t) + Fp(0) + F(t) + F{() = PV 4112)

where F,, F, are, respectively, the inertial @d the damping force vector. Fy represents
the internal resisting force related to the solid deformation only and Fi is the internal
resisting force arising out of deformation of the fluid and coupling between the two
phases, P denotes the applied loed vector. A short time At later, the equation would
be

Ft+at) + Fy(t+ 4t) + F(t+ At) +F(t+At) = P(t+ 40 (4.113)
Subtracting (4.112) from (4.113),

F(t+At) — F(t) + F (t+At) — F (1) + F(t+ At) ~ F(t)

+ Fg(t+ a0 — F,() = Pt + A1) ~ M1 (4.114)
Noting

Flt+At) = M(t+ At + At), (4.115)
expanding M(t + At) and u(t + At) in terms of Taylors series, and retaining only the
first order terms in At gives

Flt+ a0 = MOU®) + M(t) &ut) + aM(1)u(t) (4.116)

Similarly, the quantities

.9
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F(t+At) = Ot +ADu()
F(t+A4t) = K'(t+At)ult+At) (4.117)

Fi(t+At) = K (t+Ault+ At)

can be approximated as
F(t+4t) = Cl)ult) + Ot) Au(t) + ACH)u(t)

Flt+An) = K®uk) + K@) au® + AK©®u() (4.118)

F (t+A1) = K (Du(®) + K (t) Au(t) + AI;" u(®)
Use of (4.116) and (4.118) in (4.114) yields
M(D) AU(D) + AMDER) + Ot) Au(t) + ACDu(t) + K'(1) Au(®) + AK (@) u(t)
+ K™ Au(®) + AK u(t) = P(t+ At) — M(D)i(t) + Ou(®)

-K'®u® + K (tu®) (4.119)
This represents a general form of incremental equations. If mass, damping and stiffness
quantities at time t are known, (4.119) can be solved for Au(t) by step-forward inte- |
gration scheme, which also yields Au(t) and AU(t). In doing so, the quantities them-
selves are dependent on the solution Au(t) and hence an iterative scheme to reduce the

cumulative error is necessary.

The theory was specialized to the case of nonlinearity only in the soil/stress rela-
tions. This case was implemented in two finjte element programs. In the code NAOWP
(Nonlinear Analysis of Wave Propagation) elastic-perfectly plastic and bilinear stress-
strain relations were used. The other code named DANS (Dynamic Analysis of Nonli-
near Soils) incorporated a more general model of elastic-plastic work-hardening proposed
by Singh [160] A modular structure was used so that a variety of models could be

selected. Local iteration was employed within each time step and convergence assured
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before going on to the next step. NAOWP was designed to model one-dimensional wave
propagation. Linear variation over the spatial elements was assumed. In DANS (item
1.19 of Appendix B), bilinear and biquadratic isoparametric elements were implemented
for two-dimensional wave propagation analyses. Since no exacf solutions for nonlinear
wave propagation in fluid-saturated soils were available, the codes were verified against
exact solutions for single material wave propagation. Exact solutions for bilinear solids
subjected to dynamic excitation have been developed by Belytschko [10] and for an
elastic-perfectly plastic solid by Wood [173]. Figure 27 describes the discretization for
a soil column as well as the suddenly applied loading for the three cases tested. Figure
28 shows the stress history for case 3 plotted against the exact solution by Belytschko.
Figure 29 shows the stress pulse of short duration used by Wood [173] along with the
elastic-perfectly plastic soil column. Figure 30 to Figure 34 show the stress profiles at
time equal w0 4, 8, 12, 16 and 20 plotted against the exact solution by Wood [173] for
different levels of mesh refinement. Item 1.13 of Appendix B contains details of the
approach as well as illustrative applications of the two computer programs to wave

propagation through a saturated soil layer.
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Section V
LABORATORY INVESTIGATIONS

S.1 INTRODUCTION

Historically, laboratory studies of material behavior of saturated sands under cycl-
ic stress conditions have played an important role in the determination of liquefaction
potential. Numerous investigators have tried to model and predict the potential and
probability of liquefaction occurring in soils. Various test apparatus have been designed
or modified in an attempt to provide an accurate representation of the stress state gen-
erated in-gitu by ground motion. A number of experimental devices inciuding the cyclic
triaxial, cyclic simple shear, torsional shear and shaking table have been developed. A
wide diversity of data have been generated with the use of a dynamic (or peeudo-
dynamic) excitation loading pattern. Detailed reviews of these experimental programs
and design methods based upon them, can be found in s?veral state-of-the-art reports.
In particular, those by Seed [155-158L Finn [44] Casagrande [31] and the National

Research Council [109] should be noted.

The laboratory method used in this study to load the sand samples was a shak-
ing table. It is well known that the variety of small scale apparatus currently in use
in the laboratory introduce non-uniform stress and strain fields in the sample being
tested (eg. [31,127,94,174] ). Since the onmset of liquefaction is clearly a local phenom-
enon, it is certain that a measure of the liquefaction resistance of a saturated sand
would be affected by these stress and strain concentrations. The result of stress concen-

tration induced liquefaction would be an underprediction of the true liquefaction resis-
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tance. Therefore, although the shaking table is not as widely used as the other labora-

tory devices identified above, because it does more closely simulate actual field condi-

- tions, several previous investigators have used it as the basis for liquefaction studies

Among the many reports available on experimental programs ‘are several in which
shaking table tests were conducted specifically for the purpose of studying liquefaction

i including the programs of Finn [45] O-Hara [115] DeAlba [38] Seed [158] and Sasaki

(139}

In an experimental program performed on samples of saturated sand in 1971, -
Finn [45] demonstrated the usefulness of the shaking table for conducting liquefaction
studies. They observed that the shaking table offered several advantages over cyclic tri-
axial and simple shear devices. Chief among these advantages were: embedded instru-
mentation having a negligible effect on sample response can be used; the distribution of
pore pressures over time can be monitored; the uniform accelerations developed in the

plane strain specimens more closely corresponds to actual field conditions.

O-Hara [115] conducted shaking table tests on two different uniform sands. In
addition, he performed cyclic triaxial and cyclic simple shear tests on the same materi-
al. He observed that sand samples tested on his shaking table typically showed an
incrésed resistance to imitial liquefaction when compered with the behavior of the

same materials when tested in either of the two small scale devices

The shaking table tests reported by DeAlba [38] performed on specimens of Mon-
terey No. O sand. The samples were 4 inches high by 90 by 42 inches at the base
tapering to 74 by 30 inches at the top. This shape was chosen so that a rubber mem-
brane could easily be placed over the specimen and then pressurized to simulate a bur-
ied soil element. The size was chosen to provide free field conditions in the central

portion of the specimen. The membrane under which the sample was confined allowed




"

R

147
the specimen to deform during the application of the cyclic load. Additional surcharge
was applied t the specimen in the form of a reaction mass which was composed of
steel shot placed in a bag on the top surface of the sand sample. Pore pressures were

measured at several locations.

The results of further tests conducted on the Berkeley apparatus were presented
by Seed [158] in an experimental program designed to study the effects of seismic his-
toryonannddeposit.lﬁthesewsts.SeedemLobservedadramaticincreaseinthe
number of cycles required to induce liquefaction in samples which previously had been
subjected t cyclic motions significant enough to raise the pore pressure but not enough
by themselves to0 cause liquefaction. Seed et.al. attribute the observed increase in cyclic
strength to grain rearrangement. They pointed out that there is substantial evidence
that these higher values of liquefaction resistance are more representative of the actual

performance of natural sand deposits which have been subjected to past cyclic motions.

Sasaki [139) conducted a series of shaking table tests op sand samples. The sample
size they chose was much larger than had been used in any previous programs (12
meters long by 3 meters high by 2 meters wide) and it is therefore more likely that
true free field conditions existed in their samples. The samples were formed by pluvia-
tion through air similar to the procedure employed by Seed [158] Saturation was
reportedly accomplished by displacing the air through the infiltration of water from
the bottom of the sample. The sand surface was unconfined. Instrumentation consisted
of embedded pressure transducers and accelerometers. Measurements of cyclically
induced increases in pore pressure were made at a total of 35 locations within the
sample in both the free field and in the vicinity of an embedded concrete box intend-
ed to simulate a roadway. It should be noted that the increased pore pressure was an

order of magnitude greater immediately beneath the roadway than it was in the free
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field. Clearly the rate of pore pressure increase during shaking is very semsitive to

the presence of local irregularities, in this case rigid inclusions.

In order to minimize these local effects on an experimentally obtained estimate of
liquefaction potential, the test apparatus described in the following sections was
employed. Herein we give a summary. Details are given in items 1.9, 2.6 and 4.3 of

Appendix B.

5.2 EXPERIMENTAL FACILITIES

5.2.1 Introduction

The facilities used in the laboratory investigation of the liquefaction phenomenon
were designed for the purpose of providing reproducible results in which the stress and
strain conditions at the sample boundaries were well understood and could be recon-
structed accurately in a numerical model. They consisted of a unidirectional shaking
table to which was attached a test box with a capacity if approximately one cu. ft. of
soil. .The instrumentation employed to monitor the sample behavior consisted of accel-

erometers and pressure transducers.

5.2.2 Shaking table

A shaking table with a capacity of 2500 lbs. located in the Soil Dynamics labo-
ratory at the Ohio State University was designed for the liquefaction testing program.
Table motion was provided by an MTS system capable of producing peak accelerations
of approximately =+ 2 g. These high acceleration levels were achieved when the origi-
nal 3 gpm pump was replaced by a 10 gpm pump purchased with contract funds. In
order to make best use of the increased capacity of the pump, the existing single 10
gpm servovalve was replaced by dual 10 gpm servovalves in conjunction with two

accumulators. The accumulators significantly improved the system performance during
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conditions of peak fluid flow. The input signal could be either periodic or an exter-
nally programmed random acceleration time history. A schematic diagram of the lique-

faction testing system is shown in Figure 35.

523 Test Box
The test chamber which was bolted to the shaking table was designed so that:

) The length to height ratio of the samples would be such that a free field plane
strain condition existed in a substantial portion of the specimen.

° Moveable inner walls which would provide the required lateral support to the

sample during construction, could be withdrawn at the start of the cyclic test so

that the sample could deform under plane strain conditions.

® Normal stresses on the horizontal faces of the sample could be chosen indepen-
dently of the stresses on the top face, thereby allowing for tests to be construct-
ed on samples without requiring that K be = 1,

A diagram of the test chamber is shown in Figure 36.
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524 Rubber Membrane

The rubber membrane surrounding the sample was made to the exact dimensions
of the sample test chamber with the inner walls in their unretracted position. It was
constructed so that different horizontal and vertical pressures could be applied to the
sample. The membrane had to be thin and flexible so that the confining pressures
would be transmitted uniformly, but strong enough to withstand the working pressures
used. A fiber reinforced (nylon on nitrile) synthetic rubber sheet with a thickness of

025 cm met these requirements and was to make the membranes. The lower mem-

brane, o which the horizontal pressure was applied, was in the shape of a rectangular '

box, supporting the bottom and four sides of the sample. The top membrane was a rec-
tangular sheet placed on top of the sample after construction. With the lid of the test
box in place, the top membrane acted as a gasket, sealing the confining fluid around

the sides from the fluid on the top of the specimen.

5.2.5 Instrumentation

Two types of instrumentation were employed in the laboratory investigation. Pore
water pressure measurements were made using transducers attached to hypodermic nee-
dles. This allowed for direct measurement of the pore water pressure within the interi-
or of the sample while causing minimal disturbance to the specimen. Small +5g
accelerometers were placed near the top of the sample and at the sample base to record
table (input) motion as well as the response at the top of the sample. A typical

instrumentation configuration is shown in Figure 37.

5.2.6 Test Material

Uniform Ottawa sand was used in all tests conducted during the experimental
program. The minimum and maximum densities were determined to be 14.03 KN/cc
and 15.99 KN/cc respectively. The grain size distribution for the test sand is shown in

Figure 38.
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53 TESTING PROCEDURES

$3.1 Sample saturation

It is important for the proper measure of pore-pressure rise as a function of
shaking that the sample be completely saturated. The procedure chosen for saturating
the test specimens was to boil the sample in deaired water under a vacuum for not
less than 30 minutes. Each sample was constructed in the test chamber by pluviation
through water. This method was chosen because it has been our experience that prepar-
ing specimens this way will consistently yield saturated, uniform samples at a desired
density. In order to increase the liquefaction potential, the samples tested in the OSU
studies were deposited in a loose state, with relative densities ranging from 23% to
54%. To be sure full saturation was achieved, Skempton's pore water pressure parameter
( B ) was determined prior to testing. According to Black and Lee [22] values of B
equal to 1.0 signify full saturation of samples of low relative density. A value for B
greater than 095 signifies an acceptable degree of saturation for sand samples having
high degrees of relative density. Considering the relative densities used in this study,

a B value greater than or equal to 0.98 was considered indicative of full saturation.

$.3.2 Sample Confinement

Since the top of the specimen could be pressurized independently of the sideé. any
ratio of vertical to horizontal stress could have been used. Two different different rat-
ios were tested. The rwponse of samples consolidated under isotropic conditions were
the majority of the tests performed in order to make comparisons with other experi-
mental data practical. Several samples were liquefied after being consolidated anisotropi-

cally (K = 0.6).
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$.3.3 Input Motions

Two types of input motions were used in this study. The first, a harmonic input
of 10 Hz was chosen to allow for comparison between published liquefaction data
which are predominantly periodic. The second, a random amphtude acceleration time
history was included in the program to more closely simulate the type of motion actu-

ally experienced during a seismic or a blast induced disturbance.

534 Harmonic motion

A nominal 10 Hz table motion was used in all harmonic tests. The 10 Hz fre- -
quency was chosen because it was high enough that significant acceleration levels
(>2 g could be achieved within the stroke range of the actuator and yet was well

below the natural frequency of the unstrained sample, thus permitting an assumption

of uniform accelerations throughout the height of the sample. As can be seen in Figure

39, acceleration time histories recorded at the top of the specimen confirmed that the
ratio of sample to table accelerations was, in fact, approximately equal to 1.0 with a R
=

phase shift consistent with a wave speed of about 1000 in/sec.

De Alba [38] had constructed their sand samples using a reaction mass which had
been placed on top of the sample. In an attempt to explain experimentally the differ- .1

ence between DeAlba's and our results, our test conditions as described above were

modified. The modification consisted of a reaction mass similar to that used by DeAlba
P’ being added to the test specimen. o,
(J 01
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535 Random Motion

A standard method of illustrating the frequency content of an acceleration time
history is by means of a Fourier amplitude spectrum. The Fourier spectrum is an indi-
mtionofthefimlenergyintheexcitationuafunctionofffequency.lnthecontcxt
of the liquefaction tests, the peaks of the spectrum represent frequencies at which rela-
tively large amounts of energy were supplied to the shaking table/sand system. The
Fourier amplitude spectrum for the input excitation is presented in Figure 40. The
spectra show the dominant frequencies of the pink noise input to be between 6 to 15
Hz. This frequency range was selected to symmetrically bracket the harmonic liquefac-
tion potential data. The input motions were derived from data generated on an IBM/PC
XT microcomputer and show an essentially constant amplitude in the desired frequency
range. Three different time histories, each with essentially the same spectral content,

were used as inputs to the shaking table.

53.6 RESULTS

The studies presented in this chapter were conducted to provide a better under-
standing of the liquefaction phenomenon through large scale liquefaction potential test-
ing, and to provide data from carefully controlled experiments which would be suitable
for use in model verification. Herein, a summary covering principal findings is given.

Details are available in items 1.11, 1.16, 1.18, 4.3 and 44 of Appendix B.

The results of the harmonic input liquefaction tests performed om isotropically
consolidated samples during this study are presented in Figure 41. The data are given
in terms of number of cycles of shaking required for the sample reach the liquefied
state versus the cyclic stress level. This type of presentation has been used by other
investigators [88,96,107,145], and is presented here to facilitate a comparison between

data collected in this study with those presented by DeAlba [38] In Figure 41, it can

ea®
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be seen the samples tested on The Ohio State University facility were consistently less
susceptible to liquefaction and predictions based upon our results would result in much

less conservative estimates of liquefaction potential

When the results of the anisotropic tests are presented in the same format as the
isotropic test data, using the mean normal stress to represent the effective confinement,
the curve defining the number of cycles to liquefaction plots very close to the curve

of the isotropic results as can be seen in Figure 42.

As shown in Figure 43, little effect on the liquefaction potential was seen exper-
imentally when a reaction mass similar to the type used by DeAlba etal. was placed
on top of the sample. This result would indicate that the presence or absence of a
reaction mass (regardless of its height) had little effect on the liquefaction potential of

the sand sample.

The results of the different tests conducted using random motions are presented
in Figure 44. It can be seen from this figure that although there is general qualitative
agreement regarding the observed liquefaction potential among the different types of

random dynamic loadings applied, precise quantitative agreement was not observed.

"

N




“ “4 Jﬂl ki .1 v \ane ” ud v
T \ o e . N ° e
,..m uonwmpxy oruouley 10§ si[ns3Y 1891, uonoejenbry iy 2indig
qz
0001 001 ot
r T 0
4 20
¥'o
]
[96] uwowey arr e .n/..
-~ (811 #) 1970
(9T 1 #) M\nw 18°
, (8T 1 #)
831807 989Yy3 9qIIdsep YOIYAa g xypueddy
JO sme3l e3edTpul seseyjuered uy srequny :ejopN
(8T 1T 8) "4 401
JR n..___nh o | -i o ° o 4




F & g 2 ~W @ ® o e o
i
s[dweg parepriosuo) KLqresrdonosiuy 10J s1[nsay 1s9] uondRJInbr|
, Wy
000l oot - ol 1
. N R 0
F 20
Io/:/
| =0y
= (8€] v8Iv 3¢
/I ﬁ J.O
/ /G/ -
. a
) M., 90 =
L= . HURE)) b 970
(98] NOSYW
| = OZ m.o
(Tr'1 »)
L O—
o
2
91801 980Y) OqTIOSSP YO Ttym g xTpueddy
30 swe3T 93edTpul seseyjuered uy sxequny :ejo)
,ﬁ
:
L e . ___ W || ) R I B o, o

.4.‘1' T .-,il —— - ey




| SN M 4 ) [ M ) g o Y ) ) L
1 {
o
0 sidmeg ) UO SSEpy UOMOVIY B Yilm poulviq) SInsdy 189, uwonoejanbry :gp 2:ndij

0004 001 ol .

[96] NOSVH GURE)
Ny
Q
F 9°0
(91°1 #)
F 8°0
: 0"l
SSYW NOILOV3Y HLIA SIS3L ©
81897 989y} OqTIo8ep YOIIYA ¢ xtpueddy
JO sweqT @3edTput seseyjuexed ur siequny 930N
Y W U O v, »m_ mm . 9 e e e




164

uonmioxyg spmidwy wopuey I0j SINSIY 18], UondRjInbi| :pp 3indi,

( Spuodds ) 4&

.o.ooou o..on: o.m: 01

1'0

\)\Aoﬁ.ﬁ $)

+ (81T 8)

89997 08073 9qTI>sep yotym g xtpueddy
Jo sue3ly ejedTput seseyjuered ur srequny :e3oN

A

7°0

80

o't

A

XY, o/1)




’*‘“—‘—'—'“ﬁ”—""_‘ “'.‘“' T T T T T e - R T T T T T T Y Ry T ey

165

54 DISCUSSION

The motivation for the test program conducted at The Ohio State University has
been the generation of data to be used in the development and verification of mathe-
matical models. This purpose was different from any of the previous laboratory pro-
grams in that the chief goal of those programs was to develop empirical relationships
which would, for a limited range of field conditions, allow seismic designs to be made.
Therefore, in the current study, although the sample boundary conditions applied were
designed to simulate stresses in the field as closely as was practical, it was imperative
that the design of the test apparatus allow for boundary conditions which could be
clearly defined, that the material constants be thoroughly described, and the density of

the sample be as uniform as practically possible.

Over the duration of the project, several experimental programs have been con-
ducted. The results of these programs have shown that the test apparatus used was
capable of operating successfully and providing consistent results. The relatively small
offsets between the points identifying the onset of liquefaction as plotted in Figure 41
can be explained by observing that similar sampies were often of slightly different rel-
ative densities. It was also shown experimentally that tests conducted with the same
testing apparatus continued to provide consistent results even with the addition of a
reaction mass of the type reported by DeAlba [38]l Therefore, the boundary conditions
imposed on the top of the sand sample by this reaction mass cannot be the explanation
as to why the testing apparatus used in this study gave much different results for
liquefaction potential when compared Wwith the results presented by De Alba [38] Other
boundary conditions must have existed in their samples which we have not been able
to reproduce with the apparatus used in this study. It is likely that the precise meth-
od used by DeAlba {38] to attach the steel shot filled bag to the top of the sample

chamber caused localized stress concentrations at the sand-shot interface. These small

| @
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zones of high stress intensity would then be expected to generate locally high pore

pressures resulting in premature liquefaction.

Although some soil structure rearrangement is certainly likely during cyclic load-
ing, we find it difficult to attribute the eightfold strength increases observed by Seed

[158) solely to the change in structure which might result from the shaking of a

homogeneous sample, particularly while maintaining the same density. What is more

likely is that the pre-liquefaction shaking and subsequent drainage of a specimen
resulted in the formation of a more uniform sample. Wolfe [172] has shown in earlier
tests conducted on cubical specimens which were loaded cyclically to liquefaction and
then allowed to drain, that a much smaller strength increase is observed, one that is
consistent with the observed increase in relative demsity which follows shaking and

subsequent reconsolidation.

Three different band limited white (or pink) noise excitations provided the shear
stress on a number of isotropically consolidated samples. From published reporis avail-
able to the authors, it is believed that these were the first such tests conducted on
large scale samples. All acceleration time histories contained the same dominant frequen-
cies (6 o 15 Hz). If, however, the time to liquefaction is plotted versus maximum
shear maximum shear stress ratio, different curves for the different input motions
emerge. Therefore, it appears that the use of the maximum shear stress within the soil
sample during cyclic loading is not by itself an appropriate method with which to

characterize the effects of ground shaking on liquefaction potential.

Several potential causes of the differences between the liquefaction data obtained
in this study and the data reported by DeAlba [38] can be identified. It is apparent
that liquefaction is essentially a local phenomenon, ie. local irregularities greatly affect
the initiation of liquefaction. Therefore, non-uniformity in the material itself, or in

the load applied should be investigated.
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S4.1 Non-uniformity of sand samples
An experimental program conducted by Mulilis [107] showed the importance of
the method of sample formation on the liquefaction resistance of a specimen. The sam-
ples prepared by DeAlba [38] were made by pluviation through ‘air and subsequent sat-
uration, whereas all the specimens prepared in the present study were saturated by
boiling under a vacuum then deposited entirely under water at a constant drop height.
The data presented by Mulilis [107] clearly show that samples made by these two
methods demonstrate different cyclic strengths. They attributed the strength differences
observed to significantly different soil structures. A review of their findings shows
that although the wet pluviation technique we used can be expected to result in high-
er cyclic strengths than does dry pluviation, it is not likely that the structural differ-
ences obtained alone can explain the magnitude of the difference we have observed
between the two sets of results. Castro [32] attributes the cyclic behavior of sands to
changes in the void spaces at the local level. Marcuson [95] in reporting the results of
an experimental program designed specifically to study the effects of sample uniformity
on liquefaction resistance, observed markedly increased cyclic strengths in highly uni-
form samples. Furthermore, Gilbert [56] has recently shown that samples prepared by
pluviation through water are more uniform than samples prepared by the popular

method of moist tamping.

SA4.2 Nonuniformities due to testing

Wood [173] observed that pore pressures measured at the ends of the triaxial or
simple shear sample are unlikely to be useful unless tests are dome slowly enough to
guarantee pore pressure equalization throughout the sample. In all tests conducted dur-
ing this study, measurements of pore pressure rise were made within the sample itself

not at a sample boundary. Furthermore pore pressures were measured at more than one
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location in the sample during every test. A comparison of the pore pressure time histo-
ries made during the test indicates that at any instant in time a uniform pressure
existed throughout the central portion of the sample. As shown in Figure 44, this time
dependent but spatially independent pore pressure was typically observed throughout

the duration of the test.

543 Membrane penetration

Lade [87] and Hernandez studied the effects of membrane penetration on the
undrained response of sands in triaxial compression. They observed that the existence of
membrane penetration in samples being subjected to cyclic loading results in in increase
in sample volume as the pore pressures in the sample rise during shaking. This volume
change, if not accounted for, would result in an overestimation of the liquefaction
resistance since the test was in reality a partially drained test. Lade and Hernandez
cite data which indicate t;hat membrane peneteration is negligible for sands with grain
sizes ‘below 0.1 to 02 mm, or for effective stresses below 1.0 kg/sq cm. The grain size
distribution for the Ottawa sand used in this study was given in Figure 38. This fig-
ure shows that the sand used roughly corresponds to sands falling in the range where
the membrane effects would be condidered negligible. Also effective stresses on the
sample were typica.l.ly on the order of 1.0 kg/sq.cm. Nevertheless, due to the large sam-
ple surface covered by the membrane, it was felt to be: import;ant for the amount of
membrane penetration t be measured accurately in order t0 assess what effect, if any,

membrane penetration had on our liquefaction measurements.

The penetration of the membrane into the sample was measured after the sample
was pressurized to the test conditions and before the internal supporting walls were
retracted. The test chamber was attached to a volume change measuring device. With

the isotropic confining pressure constant on the saturated sand sample, the back pressure
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was incrementally raised to simulate generation of an increase in pore water pressure
during actual dynamic testing. Membrane penetration could be measured as movement
of the membrane out from between the sand grains and recorded in the form of vol-
ume change on a manometer. The amount of membrane pehetration measured was
consistently less than 1.75Xx10* percent of the sample volume. This amount of penetra-

tion was considered negligible.

5.4.4 Nonuniformity of the confining pressure at the sample boundaries

Since in the shaking table configuration used, the confining water must be accel-
erated along with the sample, there was some concern that the mass of the water,
which was arbitrarily chosen, could be affecting the distribution of pressures on the
vertical faces of the sample. Early measurements of the pressure in the confining fluid
bad failed to show any variation during shaking, but it was felt that additional test-
ing was warranted. Therefore, in a specific attempt to determine experimentally the
effect of the volume of confining water on the uniformity of the confining pressure
and therefore on liquefaction potential, plates were inserted into the space occupied by
the confining fluid. The effect was to reduce the volume of water by more than S0%.

No effect on liquefaction potential was observed.

The resuits of a test program in which saturated sand specimens were subjected
to harmonic as well as random time histories of base accelerations have been presented.
The data show that loose sands can be liquefied in the laboratory and that the resis-
tance to liquefaction is strongly dependent upon the sample boundary conditions. The
test apparatus employed in the program described herein minimized stress irregularities
at sample boundaries and should therefore be seen to be an improvement over other

laboratory methods for determining liquefaction potential.
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Section VI

DISCUSSION

6.1 OBJECTIVE OFATHE RESEARCH PROGRAM

The objective of the research program was to criticaily examine the theoretical
basis of the equations governing the behavior of saturated soils under dynamic loading
in order to identify/develop appropriate theory which would properly allow for soil-
water interaction and be thermodynamically consistent. The work would involve
implementation of the theory or theories in appropriate solution procedures. A program
of laboratory investigation was included to constitute a reliable database for verification

of the theoretical findings.

62 ACCOMPLISHMENTS

6.2.1 Review of Theories

The existing theories have been carefully reviewed. Limitations of the theories
and their differences have been carefully listed and discussed. The main findings of the
research program have been discussed at length in .the text of this report and in the

publications listed in Appendix B. A brief summary of the conclusions is given below.

The commonly used “engineering approach” to study of liquefaction, though it has
been successfully utilized for the study of many case histories, cannot be directly
extended to multi-dimensional situations. Even for simple one-dimensional cases, it
requires considerable "judgement” on the part of the engineer in addition to tedious

laboratory investigations on the dynamic behavior of the soil.
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Biot's theory uses some ad hoc assumptions. These include the existence of an
energy function for the mixture and the existence of an inertial coupling introduced
through a kinetic energy expression involving product of the velocities of the soil and
the pore-water. There are questions regarding the existence ‘and the nature of this
coupling. Definitely, under certain circumstances (e.g, small pore size) a portion of the
fluid could be moving effectively with the soil. This coupling would only constitute a
different partitioning of the total mass into one that moves with the soil velocity and
the remainder which moves relaive to the soil. However, the introduction of a "coupled
mass” appears to be entirely artificial and without any physical basis. Theories of
mixtures have been developed starting from different assumptions. Truesdell assumed
the additivity of the total energy of the constituents and proposed artificial definitions
for the stresses to obtain an identity of form between the equations of balance for the
mixture as a whole and those for the individual constituents. It is apparent that the
mixture does not have an existence as a continuum in motion and, therefore, the ques-
tion of writing equations of motion for it should not arise much less the effort to
give them the same form as the equations for each constituent. Truesdell's "third postu-
late” which states that the motion of the mixture is governed by the same equations
as is a single body, i8 unpecessary and irrelevant. Green's theory, on the other hand,
assumes the additivity of stresses and fluxes. However, Green as well as Crochet, intro-
duced energy functions for the mixture. Their work does not necessarily require the
notion of a mixture as a continuum in motion. Bowen's contention that Green's theory
is a special case of Truesdell's for vanishing relative wvelocities is clearly incorrect
because Green's theory is no less general than Truesdell's. There are differences in the
meanings attached to different terms even though the form of the equations is the
same. It appears that balance equations ought to be written for each conmstituent allow-

ing for interaction. Introduction of thermodynamic quantities associated with a mix-
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ture as a continuum in motion is incorrect. These quantities, in relation to the mixture,
must arise as a consequence of the quantities associated with individual constituents

and need not have any physical interpretation.

Tru?sdell and some others wrote the equations of balance ‘directly considering the
motion of the constituents of the mixture across an elementary fixed volume in space.
The contents of this fixed volume change constantly. For this reason, some investigators
have proposed writing constitutive equations for porosity. This would be unnecessary if
the balance laws are written for the same set of soil particles as in Gibson's theory of

nonlinear one-dimensional consolidation.

Constitutive relations are required for the diffusive resistance or the interaction
force. Truesdell's theory of mechanical diffusion includes other theories as specializa-

tions. Green's theory is quite similar.

There is considerable confusion regarding the definition of partial stresses. Terza-
ghi's dual definition for effective stress cannot be accepted. The effective stress is dif-
ferent from partial stress in the soil. The latter includes dependence upon the kinemat-
ics of the fluid in addition to the dependence upon the kinematics of the soil whereas
the effective stress is defined as the part of the soil stress which depends directly
upon the strain in the soil skeleton. Biot's and Green's assumption of the existence of
an energy function for the mixture would lead, in the linear case, ©0 a symmetrical
constitutive coupling between the soil and the water. However, because this assumption
is questionable, this coupling, even if it exists, need not be symmetrical. This is in line

with Morland's views.
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622 A Dynamical Theory of Saturated Soils.

A theory of dynamics of saturated soils was developed. This theory is based upon
the study of balance of a fixed set of particles of the soil contained in a reference
volume in the initial configuration. This reference volume moves during the process
and changes shape as well. The description of deformation and motion was accom-
plished through the use of convected coordinates as introduced by Novozhilov [112]
This eliminated the need for writing constitutive equations for porosity. It also enabled
a clearer definition of the stresses acting on the representative volume. The theory may
be regarded as an extemsion of Gibson's theory of one-dimensional consolidation to three-

dimensions and inclusion of inertia effects.

6.2.3 Development of Solution Procedures.

Truesdell's as well as Green's theories, for the case of small motions coincide with
Biot's for dynamics of saturated soils. The new dynamical theory of saturated soils
would also coincide with Green's theory if the representative volume containing the
fixed set of particles undergoes extremely small deformations. Very few solutions were
available for the problem. Exact solutions had been developed by Biot and some other
investigators for some simple problems. Numerical solutions had been attempted but
they had, in general, not been verified against exact solutions and were suspect. In the
present research effort, in order to study the effectiveness of various theories in mod-
elling dynamic response of soil systems, it was necessary to Systematically develop
solution procedures. These included exact, semi-discrete, as well as numerical solutions to
Biot's formulation of the problem of wave propagation in saturated soils and numerical
solution of Seed's and Finn's theory. Solutions were also developed for the case of non-

linear material behavior.
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Exact solutions were developed for several cases of loading of an infinite column

and of a finite layer of saturated soil. For the infinite column, these consisted of

o7

integration of Garg's fundamental solution. For the finite layer solutions were devel-
oped for the case of independent specification of velocities of the fluid and the soil at

the boundary. In case of a sudden application of velocity, the singularity was separated

- .

from the smooth diffusion and the two solutions superposed for the linear theory. It
was noticed that Garg had made some assumptions for the case of "weak coupling”

and some others for the case of ”strong coupling”. The validity of these assumptions

has been carefully examined and documented. »
Semi-discrete solutions- were developed using the Laplace Transform technique in
conjunction with a finite element discretization. Effect of refinement of mesh upon R
the accuracy of the results was examined. The eigenvalue problem becomes extremely ]
large with mesh refinement. This approach, though useful perhaps for benchmarking
numerical time-domain solution procedures, was seen to be computationally too expen- ,
sive.
In order to develop finite element solution procedures in a systematic manner, the
equations of motion were written in self-adjoint form in an appropriate space. Varia- U
tional formulations along with extensiogs and several interesting specializations were
developed. Numerical solutions using spatial discretization by finite elements and numer-
ical integration over the time-domain using interpolation schemes of suitable order, were J

developed and verified against some exact solutions. Several types of elements were

used 0 obwin an optimal combination of accuracy and computational economy. For

n.Jd

suddenly applied dynamic disturbances, it was found necessary to use "singularity” ele-

ments to properly reproduce the wave propagation.
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For Biot's theory, the usual form is the two-field formulation in which the
displacements of the constituents are chosen to be the field variables. A three-field for-
mulation including the pore-water pressures as the additional field variable was written
and finite element solution procedures developed for the same. It was found that this
scheme gave practically the same results as the two field formulation for the problems
in which the velocities were specified. However, the two-field formulation applies the
specified fluid pressure condition (e.g. free-draining boundary) in an indirect manner.

In the three field formulation this specification is direct.

Computer programs for two-dimensional wave programs were developed but could
not be checked against exact solutions because no solutions for wave propagation in

two- or three- dimensional saturated soil systems were available.

Wave propagation through nonlinear saturated soils was modelled in a finite ele-
ment based computer program. No exact solutions for wave propagation in nonlinear
saturated soils are available. The code was checked against two solution for wave pro-

pagation in a single nonlinear material continuum.

6.2.4 Laboratory Investigations.

Shaking table tests were conducted on saturated samples of a uniform Ottawa
sand. The use of a shakingtable combined with the large size of the samples mini-
mized the effects of stress irregularities at sample boundaries and the method used to
construct the samples minimized material non-uniformities. In the program described in
this report both barmonic and random amplitude table acceleration time histories were
utilized. A significant increase in the resistance to liquefaction, as compared with the
results of other published experimental programs, was measured. Potential causes for the
differences in test results were investigated. It was concluded that the test apparatus
and the methods employed in the current program should be seen as an improvement

over other experimental methods for determining liquefaction potential.
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63 FUTURE WORK
Additional work on research in the general area of dynamics of saturated soils is
needed. A major shortcoming of the available models is that they have not been care-
fully tested against actual experiments in the field or in the laboratory. The reason for
this is that experiments simulating simple boundary conditions are difficult to set-up
and most experiments that are convenient to carry out constitute very difficult
boundary-value problems for which verified computer codes are difficult to come by.
There is need to design test set-ups which are essentially one-dimensional wave propa-
gation experiments so that the carefully verified solution procedures developed in the
present research can be used to substantia_te the theoretical concepts regarding behavior
of saturated soils. On the other hand, there is need to develop analytical solutions to
two- and three- dimensiopal linear as well as nonlinear problems so that the data
from shake-table tests which are essentially two- dimensional, can be utilized to
verify the theoretical models. Any of the models would need material properties as
input data. There is need to define the nonlinear behavior of saturat;d sands very
carefully and to relate it to the propertries of the single materials involved. There
has been difficulty even in characterising dry sand behavior [110] For saturated
materials, the role of the pore-water pressures, the existence and the nature of the con-
stitutive coupling and the existence or otherwise of the inertial coupling need to be
studied. The relation between the mechanics of the particles and the behavior of the
s0il mass needs to be investigated. The soil in the field as well as the laboratory is
never absolutely uniform. The spatial variation in material properties would be greater
in the field than in the laboratory where the conditions can be controlled. The effect
of the degree of randomness on the overall behavior of the soil is extremely important
for realistic utilization of the results of the experiments in the laboratory for the situ-

ation in the field. Also, spatial variation in material properties could result in local
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liquefaction leading to perhaps a "domino” effect in promoting catastrophic liquefaction
in the soil mass in the field even though the soil might have been found to have

i high resistance to liquefaction in laboratory tests.
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Appendixz A
CONVECTED COORDINATES

This appendix contains a summary of some definitions, relations and formulse
related to the use of convectod coordinates in the mechanics of cootinua. The discus-

sicn follows Green (65) and Fung (47]

A.1  NOTATION

Indices, which may either be subscrnpts or superscripta such as 1’ x, p' g, e
are ussd to denote components of tensors of various orders. A mngle ciement ¢ hav-
ing 0o indices constitutes & system of 2zero order. Symems of clements with obe and

two indices. are respectively, termed first order and second order.

The summation convention used throughout this report umplies that the repetition
of an 1ndex (whether superscript or subscript) in a term denotes summation with

respect t0 that index over the range 1, 2, 3.

A.2 COORDINATE TRANSFORMATION

Let @ denote a set of independent vanables, whose differentials are d@'. The
mapping of @ into another set of variables & by any arbitrary single-valued function
of the form

T=0" o 0 (A.1)
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specifies a transformation of coordinates. Here we have used the same notation for the
function and its value. The arbitrary functions are assumed to possess derivatives upto
the order required. The inverse transformation is assumed to be single valued and
written as

o=@ 9 (A2)

The differentials d¢' and d¥ are related by

oF = a¢’

d4¢' = C o¥ (A3)
Evidently,

CQ=CT =8 (A.4)

where 8, is Kroneckers deita. For reversibility of transformation it is sufficient that

(3]

C-C)n-o (AS)

While the transformaticns of the differentials 10 (A3) is linear, the transformations of
variables in (A.1) and (A2) are not necemmrily linear. The coordinate transformation
with the properues described above, along Wwith the condition (A4), are called the
admismble transformations (47] If C is pomtive everywhere, then a right-handed set of
coordinates is transformed into another right-handed set and the transformation is prop-

er. In this work, the transformations are asumed to be admissible and proper, unles

otherwise stated.
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Al CONTRAVARIANT AND COVARIANT VECTORS
A system of order zero has only a single component ¢ in the variables @ and a

single component & in the variables &. ¢ is scalar if $=¢ for all ¥.

let a system of order one have components A'and A', in the variables

@ and ¥, respectively. Then, if

r.qu.%,\l (AS)

the functions A' and A’ are contravariant components of a tensor of order one. A sys-
tem is a covaniant tensor of order ooe if the components B, in the varisbles @ and B

in the vanables ¥ are related by,
B=CB= % B, (A7)

Cootravanant tensor components are indicated by superscripts and covariant components
by subscripta Transformations of contravariant and covariant components of second

order lensors are given by,

K'=C, & A" (A8

BU-C,"C"’B" (A9)
(A3) shows that the differentisls transform according to the law of contravariant ten-
sors. The use of upper index is appropriate in that case. The variables @' themselves
are, in general, neither contravaniant nor covariant and the position of their index is

only a matter of convenience.
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A4 CURVILINEAR COORDINATES

Consider the coordinates X' or x, referred to a right banded orthogonal system,
Figure 45, of axes in a three-dimensional Euclidean space. Let an admissible transforma-
dmdmawdmmlhrmvmmmhedeﬂnedb.y

¢=0Gx, x, 1) (A.10)
Since for each set of values of x, there exists a unique set of values of @, it is possi-
ble 1o represent the Euclidean space by the variables @, instead of cartesian system 1
The relations

¢Gx 1,) = constant (A11)

v
with i « 1 to 3, represent three families of coordinate surfaces and the point of inter-
section determines a point P in space. The conditions imposed on @ ensure that such a
point is uniquely defined The intersections of the coordinate surfaces are coordinate

curves and @ are curvilinear coordinates.

AS BASE VECTORS AND METRIC TENSORS
Let R be the position vector of a point P, whose coordinates are x, or x' and let

dR denote the infinitemmal vector PQ, where Q has the coordinates x +dx, or x'+dx'
Then (Figure 46)

R=zxe'=x'c (A.12)
and

dR=dx ¢'=dx'e (A13)
where e, and e¢' are unit vectors. If ds = IdRI is the length of vector PQ, then

(ds)’ =dR.dR =dx dzx, (A.14)

If 8, @ are one to one continuous mappings for the x, x' systems,

L2
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Figure 46:

Position Vector and Its Differential
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do'-ﬂdx’. ar'= & g9 (A15)
o 4
@-%u,. dx = %co, (A.16)
Consequently
dltdx‘o‘--&.e'do,-(i’de’ (A17)
&
and also
dnsdx'o,-ﬂ'—‘,c,ao’zc ¢¢’ (A18)
w 3
where
G=e =% (A19)
. 8’

The Kronecker delta and the permutation symbols are defined in rectangular

cartesian coordinate system as

8'=8,=8=8=0 for imj (=1for i=j) (A20)
0 (when two indices are equal)
e.=e¢*={1 (when i, j k are in even permutation) (A21)

ik
~1 (when i, j k are in odd permutation)

Their counterparts in general coordinates ¢' are as follows:

G,=G,.G,= % % (A22)

Gi=G'.Gi= _@;T _QO‘T (A23)
ax &x

o;=c;j.t;‘=_&;5'51“1=s‘j (A24)
ox” ¢

@
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P ‘
u=e,! poe l=e, VG (A25)
» % "
J’-J’ILI'—-—-‘ : (A.26)
ux* VG
where G is the determinant IG,J and is positive for any proper coordinate system. The
vectors G, and G' are connected by the relations N
G'=G"G, : 6,=G, G’ (A27)
G, is the Euclidean metric tensor of the coordinate system and G" is the associated ol
K
metric tensor {47] The magnitudes of these base vectors are,
G!=+G,.G,= /G, o
GI=v6'.6'=VG" (A28)
where the index is not summed. The line element ds in (A.14) may now be written
’ @
in the form 3
ds’ =dR.dR =G, d6'd6’ = G d6 48 =df, a6’ (A29)
®
A6 PHYSICAL MEANING OF COVARIANT AND CONTRAVARIANT
COMPONENTS OF A VECTOR .
1
A vector w in terms of covariant and contravariant base vectors is
w=wiGi=w‘Gl (A.30)
where by (A27), °
w,=Gw w=6"w, (A31)
.1

R S

. e
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According w0 (A.30), if w is represented by line vectors, then W' are the components
of w in the direction of the covariant base vectors G, while w, are the components of
w in the direction of the contravariant base vectors G' A two-dimensional illustration
is shown in Figure 47. Some other results are
-v‘w'-v'wi

v.v-Guv'w’-G”v‘wJ

vl = Jv.w-\/w‘w’ (A.32)
(A.30) can also be written as

) Jab
s w \/Gu(}i % G"G'

(no sum) (A33)

VG, VG
w’JG,moomponenuofwmlvedinthedimctionoftheunitvecton—c\/éz
B

which are tangent to the coordinate curves. A similar interpretation for w, v G" is pos-
sible. These components vizz W' /G,andw,VG" (i not summed) do not obey the

tensor transformation laws and are not components of tensors.

re

K.




Figure 47: Covariant and Contravariant Components of a Vector
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A7 PARTIAL DERIVATIVES IN CARTESIAN COORDINATES
Consider X', a contravariant tensor of order one, expressed as a function of coor-

dinate system X. The relationship with the description in the coordinate system X, is

given by (A6) ax
—_
KRG, i, i)=A"G, 1, x’)% (A34)
Differentiating
LU Y L -
& s aa
b ] - L3 8 N
mAt QTR L 0A B (A.35)
n"xn' gy & & &

If the two carteman ocoordinate systems are related by an affine transformation,

Lma 1+ n.ndb,bangconmnm—ﬁ—-o'md-is . Hence
s!_E..G?_.L_'!A'_ (A.36)
& & & &'

(A36) umplies that for cartesian systems, related by an affine transformation, the par-

tial denvative -QA—. follows the transformation law for a mixed tensor of order two.

The second order term in (A.3S) does oot vanish in curvilinear coordinates and thus

the partial derivative of the tensor does not yield a higher order tensor.

... . e
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A8 COVARIANT DIFFERENTIATION

If R is taken t be a scalar function of the general coordinates viz.

_ R=R(0, 0, 0, (A.37)
then
F G,=R,= % (A38)
The differentiation of base vectors G, yields
2
R
6 =A% -p =3 (A.39)
. ij 69‘ ooj il Ji
Recalling (A.19) and noting that ¢, form a set of constant base vectors,
2_r
G, = —9‘—x— e : (A.40)
° a6 ¢’
{
which, upon use of (A.19), becomes
G,=r,G'=I" G, (A41)
where
2_r r
r,=-2x & (A42)
30’98’ 36"
and
r,=6"r, (A.43)
(A22) and (A.42) give
o -1
lp=306,,6,-G,) (A.44)
Similarly, (A.29) implies
i _ ot
° G =-TIG (A.45)

The symbols I, ,andI", are Christoffel symbols of the first and second kind, respec-

tively. If w is a vector
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%=%%=c{§=c{w., (A.46)
50 that W, transform according to the covariant transformation. Also, from (A.30),
w =wG +wW G,
=w_ G +w G, (A47)
Using (A.41) and (A.45)
w,=wlG =w )G (A.48)
where
wi=w +I" w (A.49)
wli=w - w (A.50)

The expressions w'l, and w,|, are the covariant derivatives of w' and w,, respectively, of
the vector w. Since w, transform according to covariant transformation, it follows
from (A.48) that the covariant derivatives of a2 vector form a tensor of order two.
Similarly, we can write expressions for derivatives of second order tensors in the fol-
lowing form,

A=A -TP A -T" AL

iji - ald i mj Jj im .
Al =AY 4T A™+T A (ASD)

A9 GEOMETRIC INTERPRETATION OF COVARIANT DERIVATIVES
Consider a vector field w associated with every point in space in the region

under consideration. Let the vector w at a point P (6, 6° 6°) be
w(P)=w'(P)G, (P) (A.52)

At a neighboring point Q (@' +d@’, 6° +d@° 6° +d6®), the vector is

w(Q) = w(P)+dw(P)

T

A

Py




=[w'(P) + dw'(P)] [G,(P) +dG, (P)] (A53)
Taking the limit as d¢ =0, we get,
dw =[w'+dw'] [6,+dG) — w'G,=w'dG, +dw'G, : (A.54)
and the derivative

i
%=wi%+%(}i (A55)
Thus, the derivative of W consists of two parts viz. one due to the variation of the
components of W' as the coordinates §' are changed and the other arising from the
change of the base vectors G, as the position of the point @' is changed. Use of (A.41)

in (A.55) gives

% = %Gr-G‘W‘ I"ijG,

r

= [%— + W‘ l"u] Gr

=w'l.G (A.56)

] r

Thus the contravariant derivative w'l, represents the components of % referred to the

base vectors G,.

A.10 GRADIENT, DIVERGENCE AND CURL IN CURVILINEAR COORDINATES
The gradient (grad ¢), divergence (div F) and curl (curl A) where

¢ is a scalar and F, A are vectors are given by

grad¢=¢ G’ (As7)
divF=F'l_ (A58)
curlA=€™ A | G, (A.59)

K_N

N




These functions are invariant under general transformation of coordinates.

ijent forms are as follows

grad$=G"
wl’

3lF' G )

T

divF=V.F=G".

=G".G,F
=Fl

T

=[—L)(
—[m](‘/@l")'r

cur1A=VxA=G'-§—xA G’
30" )

=6"'x 2 (4,69
&0

— ret
=€ A.IrG‘

If w is a vector defined throughout a volume
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More conven-

(A.60)

(A61)

(A62)

(A.63)

V, which is bounded by a closed sur-

face S and if m is a unit vector normal to the surface, then the usual form of Green's

theorem is

.[divde=‘[w.ndS

Alterpatively, in tensor notation,

[W'IrdV=[—}E—(\/—5w')'rdV=[wrnrdS

where

n=an'

(A64)

(A.65)

(A.66)

4
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A.11 KINEMATICS AND KINETICS

A1l Introductory

The particles of matter that occupy regions of Euclidean space form a body. A
given body, B, may occupy different regions at different times. For convenience, we
denote the configuration at time 7=0, as a reference configuration C, The fixed
region of space C, is occupied by particles of the body. Now, if this material moves
so that at a subsequent time 7 =t, it occupies a new region of space C, then the body
is said to have undergone a motion. Mathematically, this can be represented by a series
of coordinate transformations. In particular, the proper transformations assumed in this
work ensure that the axioms of continuity and impenetrability are followed. As the
continuum moves from one configuration to another, the matter in the neighborhbod of
each point is translated and rotated as a rigid body and is strained. Strain of an ele-
mental volume is that part of the relative motion between neighboring particles that is
not due to the rigid motion. In this section various measures of strain due to relative

displacements are described with reference to a single material.

A.112  Geometric Relations

Consider a continuous three-dimensional body in the reference configuration C, at
time 7=0. Let a system of coordinates a, be so chosen that a point P of the body is
described by P (a, a, a). At time 7=t, let the body be in configuration C, having
undergone a motion. The particle P, originally in C, now be at Q in C, with coordi-
nates (x,, X, x,). The coordinate systems a and X, may be curvilinear and need not be

coincident. They both describe a Euclidean space, Figure 48.

The admissible transformations of the type described in Section A.2 are

x=x(a, a, a,) (A67)

which has a unique inverse

A
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a,=a(x, x, x,) (A.68)

Consider an infinitesimal line element PP in the reference configuration C, such

that P is given by P(a +da).Then, ds, the length of PP, is |

ds} =a, da'da’ (A.69)
Here a, is the Euclidean metric for the coordinate system a. Let a corresponding line
segment in the configuration C be QQ and its length ds. Then

ds’ =G, dx'dx’ (A.70)
where G, is the Euclidean metric tensor for the coordinate system x,. Recalling (A.15),
The change in length is:

ds’~as’ =[G %%—ai]]daidaj (A7D)
or equivalently,

ds’ —ds} =[G, —a__ % %: Jdx'dx’ A72)

Defining strain tensors

E,= 306, %%—auj (A.73)
e,= 3G, 2, % %1 o | (a74)
we get
ds’ —ds = 2E, da'da (A.75)
or
ds’ —ds =2¢ dx'dx’ (A.76)

E, and e,, are, respectively, Green's strain tensor and Almansi strain tensor [47]

dl 2. »..

KN
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A.113 Description of Deformation
Generally, the initial and the deformed configurations are described with reference

to a fixed rectangular cartesian frame.

However, an alternative introduced by Novozhilov [112] is to use a frame of ref-
erence which moves continuously with the body and deforms in such a way that the
numerical values of the position coordinates of the particles of the body remain the

same throughout the motion. This is convenient for finite deformation [47].

For fluid motion, the interest is centered not on the displacements of the particles
or their velocities but the velocity distribution in the volume occupied by the fluid.
The most convenient mathematical framework for this purpose is the Eulerian coordi-

nates [112])

Consider a rectangular cartesian coordinate system a, shown in Figure 49. The
position vector of a typical point P, in the reference configuration C, is
r=ae A7)

F I N
where e, are unit vectors along fixed axes. Let a typical point P, in C, occupy posi-
tion P in the new configuration C at time 7=(0€<7St). The position vector of P
referred to the same fixed axes is

R=ze | T (A78)

1 1
Components of the displacement vector are:

U, =z—a (A.79)
Also, the one to one correspondence between points in C and C, implies
2,=2(a, a, a,) (A.80)

a,=alz, z, z,) (A.81)

KM
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Figure 49: Convected Coordinate System
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where a, and z, are admissible transformations. Here we do not differentiate between a
function and its value. The difference will be clear in the context.
The velocity v of a particle referred to the fixed system of axes, is
v=R=ve " (A.82)
It follows from (A.79) that
v,=z=u (A.83)
Similarly, the acceleration £ of a particle referred to the fixed system of aXes is
f=fe=v=R (A.84)
and
£=z=0=Y, (A.89)
The initial state in C, may also be described by a general curvilinear set of coor-
dinates x, so that,
a,=a(x, 1, 1, 7=0) (A.86)
where a, is single-valiwd and continuously differentiable as many times as required.
We may imagine this curvilinear system x, to move continuously with the body as we
pass from the reference state C, at 7=0 to the state C at 7=t The triplet of real
numbers x, are merely the labels that we assign to the positions corresponding to the
material particles of the body in the reference configuration C, The values of x
remain unchanged for the new position P in C. The coordinates X, may be rectangular
or curvilinear in C, but are curvilinear, in general, in C. Thus the coordinates of P
with reference to the invariant convected coordinates are

z,=2(x, x, X, 7=1) (A.87)

Using (A.15) and (A.86), we may define a contravariant vector dx', in C, as
. i , P
=& qa) =& g (A88)
da’ ax’

From (A.80) and (A.88)

s — —em iy
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. i |
dz'= ﬁj- da’= & gy (A.89)
g g’
and
i :
ax'= 8 4 (A.90)
&
at a fixed time. The position vectors of P, and P, respectively, take the form
r=r(x, 1, x,) (A91)
and
R=R(x, x, 1, 1) (A.92)

The displacement vector is

u=ulx, 1, x,, 1) (A93)
Noting that the convected frame x, is rectangular in C, the base vectors g, g' for the
system x, in the body at C, are

g=r,=¢ (A94)

g g=c.c'=8 (A.95)
The metric tensors g, g" are

8,=8-8,=9, gl=g.g=8" (A.96)
S'unilgrly, the base vectdrs G,, G' and metric tensors G, G for the curvilinear system

X, in the body at time t are

G=R, G.G'=§ (A97)
G,=G,.G,= -31—: & (A.98)
o or
- S i j
¢'=G.¢'= 8L & (A99)
9z =

The strain tensor in convected coordinate system x, is defined as
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vy= 5 Gy—g)=2G,~8) (A.100)
For line elements corresponding to the vectors r and R viz. ds, and ds, respectively,
ds) =g, dx'dx'=$, dx'dr’ “ (A.101)
ds’ =G, dx'dx’ (A.102)
and
ds® —ds] =2y, dx'dr’ (A.103)

Yy may be expressed in terms of the displacement vector u or its components
with respect to the base vectors g, (ie. e) or G, We have

G,=R ,=r +u;=¢+u, =(g,, -!-um_l)em =(5,, + u, Je, (A.104)
Hence,

1 = 1
Y= -i(gi.u'j+gj.u.‘+u'i.u'1)- E(Gi.u.j+6j.u'i-n’i.u'1) (A.105)

The displacement vector u may be expressed in terms of base vectors of C, and C.

u =u.e (A.106)

and

m -—
u =U_G"=U"G, (A.107)

(A.106) and (A.105) give

|-

Y= [ui.j +u}i o, um.)J (A.108)
Similarly, (A.107) along with (A.97) through (A.99) gives

1
7y = U+ UL -0 LU (A.109)

e,
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Al14 Velocity and Acceleration in Convected Coordinates
When referred to the state C,, the expressions for velocity and acceleration vec-

tors with respect to x, coordinstes are

v=ﬁ'ei=ﬁ‘e'=fx‘el (A.110)

f=u'e=ue=ue (A.111)
The vectors v and f can also be resoclved in terms of the base vectors G,, G' of the
configuration C. Several alternative representations are possible. Thus,

v=v'G_=v_G" (A.112)

f=f"G_=f G (A.113)

- (A.79) and (A.104) give

Gn=z.,.mei=-£; e (A.114)
&
and
G™= ﬁi ¢ (A.115)
&
Hence,
v=v"-£; e =v,_ ﬂ;—e' (A.116)
6x i -4
) m
g=f" & o=f E_ (A.117)
o &
Comparing (A.110) with (A.116) and (A.111) with (A.117),
v B =iy (A-118)
8
vmb’_?=6i=d‘ (A.119)
&
LI PR (A.120)

axm




215
' % =5 =0 (A121)

A11S  Changes in Volume and Ares
The convected coordinate system is rectangular cartesian in the initial state and

curvilinear in the deformed state. Consider an elementary rectangular parallelopiped
enclosed by the six surfaces viz

x =constant and X +dx = consunt (i=1 to 3) (A.122)
The vectors ¢,dx, (no sum) form the sides of the parallepiped, the volume of which is
given by,

dV,=dx, d1,dx, =dx'dx’dx’ (A.123)
After motion and deformation, the rectangular perallepiped is deformed into a parallo-

piped with sides defined by G,dx' (no sum) i=1,2,3. The new volume is

dV=1G,.(G, x G, Mdx' dx’dx’ (A.124)
but

G,.(G,xG )=k |=IG |=JG (A.125)
Hence

dV = JGdz, dx,dx, = JGdV, (A.126)

If dA, denotes an elementary area in the reference configuration on the coordinate
plane x, =constant, then

dA,, =le,xe,idx, dx, =dx, dx, =dx’dx’ (A127)
After deformation, the originally plane area dA,, becomes a curved surface dA, with
vectors G,dx’ and G,dx’ as its sides. The area

dA, =1G,xG,ldx’ dz’ (A.128)

2.
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G,XG,=¢,, G'= VGe,, G'= VGG (A.129)

The magnitude IG,XG,| is

6,%6,1=1VG6'I1= VGG ’ (A-130)
Hence

da, = V66 ax’ax’ (A.131)
In general,

dA, = VGG drdr* (no sum on i and i j= k) (A.132)

in which dA, denote the areas in the deformed body which in the undeformed state

has values dA, G = 1 two 3).

A.116 Kinetics

This discussion follows [65] Let the surfaces x,= constant at a point P in the
deformed state C form a tetrahedron. The edgﬁs of the tetrahedron are formed by the
coordinate curves PP, of length ds, and the curves P,P, P,P, PP, (Figure 50). Let the
surfaces x, = constant of the tetrahedron have the areas dA,. These may be represented

vectorially by

G — (A.133)

1
whmListheunitbasevector.A.lso,theareaofP,P,P,denotedbydA.isrepre—

/Gu
sented vectorially by ndA, where n is the unit normal to the surface. Hence, since

the area P,P,P, is vectorially equivalent to the areas dA,

3, G'dA,

ndA = (A.134)

=1 VG"

K J
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Figure 50: Infinitesimal Curvilinear Tetrahedron
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.
so that if n, are the covariant components with respect to the base vectors G', it fol-

lows that,

| G'da,
| G'da=
E V&

or nVG'da=dA, (A.135)

1

Let t denote the stress per unit area of the surface at a point P in the deformed

body. Cauchy’s equation of motion, following Green [65] is

ftdA+.[p(F—f)dV=0 (A.136) B
A

where V an the arbitrary volume in the body in the state C and is bounded by a
closed surface A. Also, p is the density of the body in C. F and f are the body force
and acceleration vectors, respectively. Applying the equation of motion to an infinitesi-
mal tetrahedron PPP,P, we have, in the limit, keeping the direction of n, the normal
%0 the area, fixed,

tdA =t dA, (A.137)
Note that dA, are the areas of theé surfaces of the tetrahedron under consideration and
t, are the stress vectors associated with these elemental areas. Volume forces and iner-

tia terms acting on the tetrahedron do not appear in this equation since they are of

higher order of smallness than the surface forces. (A.135) and (A.136) give
3 . : :
t=3 ot VG' ‘ (A.138) -
i=1

The stress vector t is invariant under transformation of coordinates and n, are compo-

nents of covariant vector. It implies that t v G" is a contravariant type transformation

and

t,VG'=1ig =76 (A.139)
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where 7Y and ‘r; are componenets of the associated contravariant and mixed tensors of

second order, called stress vectors. (A.138) and (A.139) give

nT
t=-\-’/-_6’=r"n,Gj=-r;n,G‘ : (A.140)
Where
T,=t, V66" = VGG = VGri¢’ (A.141)

T, is introduced for convenience. An element of area at a point x, in the body C is
v GG"dx*dx* (i not summed and i# jk) and the force across this element is,
t v GG"dr'dx* = T,dx' dx* (A.142)

The conditions at the boundary surface of the body, at which surface tractions are pre-

scribed, require

t=P=P'G=PG (A.143)
(A.140) gives

7in =P (A.144)
and

r'a =P (A.145)

it
It is generally -assumed that the geometry of the reference configuration is known a
priori, it is often convenient to define the state of stress at a point by relating t its
position in the initial configuration. The stress vector, t, is referred to a surface S at

time t in body C and measured per unit area of S. The stress tensor 7" referred to x,

coordinates in C and is measured per unit area of these coordinate surfaces

If ,t is a stress vector across the x, surface in C, but measured per unit area of

the corresponding x, surface in C, then use of (A.142), yields

T dr'dr" =t Vgg'drdar" (A.146)

N ]
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If sY is the stress vector measured per unit area of the undeformed body, associated
with a surface in the deformed body, whose unit normal in its undeformed position is
o

ot = s o, G, = s; oy G ’ ' (A.147)

where ;n=.ng' =,n'g. (A.139) gives

LV =t §'=d'G, (A.148)
(A.148) and (A.146) give

Ti=oti\/g= \/EsijGj=sijG’. as Vg =1 for a cartesian frame (A.149)
where

s'= JG7" (A.150)

s¢ are componets of the second Piola-Kirchoff stress tensor [114] (A.104) along with

(A.141) and (A.149) gives

T, = \/Gfij(8m+um)em=s”(8m+um)en=\/EP;%=S;°“ (A151)
The stresses P, =7%(§,,+u, ) are measured per unit area of x, surfaces in C but are
referred to the base vectors ¢ in C, The stresses S, =s'(8_ ,+u, ) are measured per
unit area of the x, surfaces in C, and are referred to the base vectors ¢, in C, These

are not symmetric. The stress tensor defined by components S'_ is called the first

Piola-Kirchoff stress tensor,

.0
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B.S OTHER PRESENTATIONS
In addition to the publications and presentations listed above, the principal investi-

gator and his co-workers presented results of the research at the following conferences:

51.  Ranbir S. Sandhu, Application of Theories of Mixtures to Saturated
Soils, Engineering Foundation Conference on "Compressibility Phenomena in Subsidence”,
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Also Mr. Amato presented a paper on the experimental work at a seminar in Lexing-
ton, Kentucky on )ctober 11, 1985. Dr. RS. Sandhu was invited by the university of
Rhode Island, Dept. of Civil Engineering, to present a guest lecture in November 198S,
on Finite Element Analysis of Dynamics of Saturated Soils.
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0.

A summary of results of the research was made available in letter form to the
National Research Council, Committee on Earthquake Engineering, Panel on Liquefaction.
This panel planned to hold a workshop at MIT during March 1985 and seminars were
conducted later in the year. Dr. Sandhu attended the National Research Council seminar ]
on State-of-the-Art in Soil Liquefaction., A written contribution to the seminar report o
was submitted to Dr. Robert V. Whitman along with copies of the contribution to S
members of the Earthquake Engineering Committe of the National Reserach Council and
the participants and observers at the workshop. Dr. Wolfe attended a symposium organ-
ized by the AFOSR at MIT on September 14 and 15, 1987.
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